Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    ARTICLE

    Lubrication of An Infinitely Long Bearing by A Magnetic Fluid

    R. M. Patel1, G. M. Deheri2, P. A. Vadher3

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.3, pp. 277-290, 2010, DOI:10.3970/fdmp.2010.006.277

    Abstract An endeavor has been made to analyze the performance of an infinitely long magnetic fluid based hydrodynamic slider bearing in the presence of a magnetic fluid lubricant. The associated Reynolds' equation is solved with appropriate boundary conditions. Expressions for dimensionless pressure, load carrying capacity and friction are obtained. Computed values are displayed graphically. It is seen that the magnetic fluid lubricant improves the performance of the bearing system. The friction decreases at the moving plate while it increases nominally at the fixed plate due to magnetization. In order to extend the life period of this magnetic fluid based bearing system… More >

  • Open Access

    ARTICLE

    Effects of Non-Newtonian Ferrofluids on the Performance Characteristics of Long Journal Bearings

    J.R. Lin1, P.J. Li2, T.C. Hung3

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 419-434, 2013, DOI:10.3970/fdmp.2013.009.419

    Abstract On the basis of the Shliomis ferrofluid model (1972) together with the micro-continuum theory of Stokes (1966), the influences of non-Newtonian ferrofluids on the steady-state performance of long journal bearings have been investigated in the present paper. Analytical solutions for bearing performances are obtained from the non-Newtonian ferrofluid Reynolds-type equation. Comparing with the Newtonian non-ferrofluid case, the effects of non-Newtonian ferrofluids with applied magnetic fields provide an increase in the zero pressure-gradient angle and the load capacity, and a decrease in the friction parameter, especially for a larger non-Newtonian couple stress parameter and magnetic Langevin’s parameter. For the long journal… More >

  • Open Access

    ARTICLE

    Convection Correlations at High Re Numbers for Cavities of Cylindrical Roller Bearings

    S. Guenoun1, A. Baïri1, N. Laraqi1,2, J.M. García de María3, J.G. Bauzin1, A. Hocine1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.2, pp. 197-214, 2012, DOI:10.3970/fdmp.2012.008.197

    Abstract Roller bearings are used in mechanical setups to reduce rubbing. In some applications, the thermal dissipation involved mostly due to friction between rollers and rings is important. Correct operation of the roller is possible only if local thermal phenomena are controlled. In this work, the resulting dynamical and thermal fields within the enclosures limited by rollers and rings in cylindrical bearings are obtained through numerical modelling. Convective heat transfer is quantified by Nu-Re-Pr correlations for various dynamical and thermal configurations of the bearing. Two specific shape factors of the cavity and common fluids of engineering interest are considered, including air,… More >

  • Open Access

    ARTICLE

    Joint Bearing Mechanism of Coal Pillar and Backfilling Body in Roadway Backfilling Mining Technology

    Zhengzheng Cao1, Ping Xu1,*, Zhenhua Li2, Minxia Zhang1, Yu Zhao1, Wenlong Shen2

    CMC-Computers, Materials & Continua, Vol.54, No.2, pp. 137-159, 2018, DOI:10.3970/cmc.2018.054.137

    Abstract In the traditional mining technology, the coal resources trapped beneath surface buildings, railways, and water bodies cannot be mined massively, thereby causing the lower coal recovery and dynamic disasters. In order to solve the aforementioned problems, the roadway backfilling mining technology is developed and the joint bearing mechanism of coal pillar and backfilling body is presented in this paper. The mechanical model of bearing system of coal pillar and backfilling body is established, by analyzing the basic characteristics of overlying strata deformation in roadway backfilling mining technology. According to the Ritz method in energy variation principle, the elastic solution expression… More >

  • Open Access

    ARTICLE

    Impact Response of Stiffened Cylindrical Shells With/without Holes Based on Equivalent Model of Isogrid Structures

    Qingsheng Yang1,2, Shaochong Yang1,3, Xiaohu Lin4

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 57-74, 2015, DOI:10.3970/cmc.2015.045.057

    Abstract An equivalent continuum model of an isogrid structure is utilized to analyze the impact response of isogrid structures and stiffened structures. The parameters of the equivalent model are determined, and the comparison between the equivalent continuous structure and the real grid structure are examined to validate the reliability of the equivalent model. Then, the impact responses of stiffened cylindrical shells with and without an elliptical hole are investigated by using the equivalent model of grid structures. For a different location and geometry of the elliptical hole, the deformation and load-bearing capacity of the grid-stiffened cylindrical shells are studied. The numerical… More >

Displaying 41-50 on page 5 of 45. Per Page