Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (98)
  • Open Access

    ABSTRACT

    Superfast 3-D Shape Measurement with Binary Defocusing Techniques

    Song Zhang, Yajun Wang, Laura Ekstrand, Ying Xu, Yuanzheng Gong

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.2, pp. 39-40, 2011, DOI:10.3970/icces.2011.018.039

    Abstract High-speed, high-resolution 3-D shape measurement has become increasingly important, with broad applications including medicine, homeland security, and entertainment. Techniques such as structured light, stereovision, and LIDAR have led the way in this field. In recent years, we have made some progress, developing an unprecedented 60 Hz system utilizing a digital fringe projection and phase-shifting method and simultaneously achieving 40 Hz 3-D shape acquisition, reconstruction, and display. However, a conventional digital fringe projection system requires the computer to generate sinusoidal fringe patterns to be sent to the projector. Because 8 bits are usually needed to represent high-contrast sinusoidal patterns, the data-throughput… More >

  • Open Access

    ABSTRACT

    A meshless solution of binary alloy solidification

    Božidar Šarler, Gregor Kosec, Robert Vertnik

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.11, No.2, pp. 53-54, 2009, DOI:10.3970/icces.2009.011.053

    Abstract This paper explores the application of the mesh-free Local Radial Basis Function Collocation Method (LRBFCM) [1] in solution of coupled heat transfer and fluid flow problems associated with solidification of a binary alloy. The involved temperature, velocity, species and pressure fields are represented on overlapping sub-domains through collocation by using multiquadrics Radial Basis Functions (RBF). The involved first and second derivatives of the fields are calculated from the respective derivatives of the RBF’s. The energy and momentum equations are solved throughexplicit time stepping. The pressure-velocitycouplingis calculated iteratively, with pressure correction, predicted from the local continuity equation violation [2,3]. The solution… More >

  • Open Access

    ARTICLE

    A New NTRU-Type Public-Key Cryptosystem over the Binary Field

    Youyu Gu1, Xiongwei Xie2, Chunsheng Gu3,*

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 305-316, 2019, DOI:10.32604/cmc.2019.04121

    Abstract As the development of cloud computing and the convenience of wireless sensor netowrks, smart devices are widely used in daily life, but the security issues of the smart devices have not been well resolved. In this paper, we present a new NTRU-type public-key cryptosystem over the binary field. Specifically, the security of our scheme relies on the computational intractability of an unbalanced sparse polynomial ratio problem (DUSPR). Through theoretical analysis, we prove the correctness of our proposed cryptosystem. Furthermore, we implement our scheme using the NTL library, and conduct a group of experiments to evaluate the capabilities and consuming time… More >

  • Open Access

    ARTICLE

    A Frame Breaking Based Hybrid Algorithm for UHF RFID Anti-Collision

    Xinyan Wang1,*, Minjun Zhang2, Zengwang Lu3

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 873-883, 2019, DOI:10.32604/cmc.2019.05230

    Abstract Multi-tag collision imposes a vital detrimental effect on reading performance of an RFID system. In order to ameliorate such collision problem and to improve the reading performance, this paper proposes an efficient tag identification algorithm termed as the Enhanced Adaptive Tree Slotted Aloha (EATSA). The key novelty of EATSA is to identify the tags using grouping strategy. Specifically, the whole tag set is divided into groups by a frame of size F. In cases multiple tags fall into a group, the tags of the group are recognized by the improved binary splitting (IBS) method whereas the rest tags are waiting… More >

  • Open Access

    ARTICLE

    A new modelling approach based on Binary Model and X-FEM to investigate the mechanical behaviour of textile reinforced composites

    G. Haasemann1, M. Kästner2, V. Ulbricht3

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.1, pp. 35-58, 2009, DOI:10.3970/cmes.2009.042.035

    Abstract The purpose of this paper is the presentation of a new efficient modelling strategy based on the combination of Binary Model and Extended Finite Element Method (X-FEM). It is applied to represent the internal architecture of textile reinforced composites where the resin-saturated fabric is characterised by a complex geometry. Homogenisation methods are used to compute the effective elastic material properties. Thereby, the discrete formulation of periodic boundary conditions is adapted regarding additional degrees of freedom used by finite elements which are based on the X-FEM. Finally, the results in terms of effective material properties reveal a good agreement with parameters… More >

  • Open Access

    ARTICLE

    Mesoscopic Simulation of Binary Immiscible Fluids Flow in a Square Microchannel with Hydrophobic Surfaces

    S. Chen1,2, Y. Liu1,3, B.C. Khoo4, X.J. Fan5, J.T. Fan6

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.3, pp. 181-196, 2007, DOI:10.3970/cmes.2007.019.181

    Abstract The mesoscopic simulation for fluids flow in a square microchannel is investigated using dissipative particle dynamics. The velocity distribution for single fluid in a square channel is compared with the solutions of CFD solver, which is found to be in good agreement with each other. The no-slip boundary condition could be well held for the repulsive coefficient ranged from 9.68 to 18.0. For the same range of repulsive coefficient, various wettabilities could be obtained by changing the repulsive coefficient for binary immiscible fluids, in which the immiscible fluids are achieved by increasing the repulsive force between species. The typical motion… More >

  • Open Access

    ARTICLE

    Binary Collisions of Immiscible Liquid Drops for Liquid Encapsulation

    Carole Planchette1, Elise Lorenceau1, Günter Brenn2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 279-302, 2011, DOI:10.3970/fdmp.2011.007.279

    Abstract This work is dedicated to a general description of collisions between two drops of immiscible liquids. Our approach is mainly experimental and allows us to describe the outcomes of such collisions according to a set of relevant parameters. Varying the relative velocity U as well as the impact parameter X we can build for each pair of investigated liquids a nomogram X,U showing three possible regimes: coalescence, head-on separation and off-center separation. In this paper, we also study the influence of the liquid properties, i.e. viscosity, density, surface and interfacial tensions using a set of aqueous glycerol solutions together with… More >

  • Open Access

    ARTICLE

    Impact of the Vibrations on Soret Separation in Binary and Ternary Mixtures

    S. Srinivasan1, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 201-216, 2011, DOI:10.3970/fdmp.2011.007.201

    Abstract CFD simulations have been made to understand the impact of the vibrations of the ISS on the thermodiffusion process. Simulations were made for two ternary hydrocarbon mixtures and one binary associated mixture. While one of the ternary mixture was at a pressure of 35 MPa, the second ternary mixture as well as the binary mixture were at a pressure of 0.101325 MPa. The analysis of the results showed that imposing the ISS vibrations had a profound effect on the Soret effect in all three systems. More precisely, in all three mixtures, a single convective flow cell is established. Such a… More >

  • Open Access

    ARTICLE

    Rayleigh-Marangoni Instability of Binary Fluids with Small Lewis Number and Nano-Fluids in the Presence of the Soret Effect

    A. Podolny1,2, A. Nepomnyashchy3, A. Oron4

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.1, pp. 13-40, 2010, DOI:10.3970/fdmp.2010.006.013

    Abstract A general model for two-component transport phenomena applicable for both nanofluids and binary solutions is formulated. We investigate a combined long-wave Marangoni and Rayleigh instability of a quiescent state of a binary (nano-) liquid layer with a non-deformable free surface. The layer is heated from below or from above. The concentration gradient is induced due to the Soret effect. A typical behavior of monotonic and oscillatory instability boundaries is examined in the limit of asymptotically small Lewis numbers and poorly conducting boundaries in the two important long-wave domains k~Bi1/2and k~Bi1/4. More >

  • Open Access

    ARTICLE

    Quasi Steady State Effect of Micro Vibration from Two Space Vehicles on Mixture During Thermodiffusion Experiment

    A.H. Ahadi1, M.Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 397-422, 2012, DOI:10.3970/fdmp.2012.008.397

    Abstract The numerical simulations of a thermodiffusion experiment in atmospheric pressure binary mixtures of water and isopropanol subject to micro-vibrations at reduced gravity are presented. The vibrations are induced on board ISS and FOTON-M3 due to many different reasons like crew activity, spacecraft docking or operating other experiments, etc. The effects of micro-gravity vibration were investigated in detail on all of the mixture properties. The influences of different cavity sizes as well as different signs of Soret coefficients in the solvent were considered. In this paper, the thermodiffusion experiment was subjected to two different g-jitter vibrations on board ISS and FOTON-M3… More >

Displaying 81-90 on page 9 of 98. Per Page