Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (71)
  • Open Access

    REVIEW

    Contribution of Biomechanics to Management of Ligament and Tendon Injuries

    Savio L-Y. Woo∗,†, Matthew B. Fisher, Andrew J. Feola

    Molecular & Cellular Biomechanics, Vol.5, No.1, pp. 49-68, 2008, DOI:10.3970/mcb.2008.005.049

    Abstract The contribution of biomechanics to the advancement of management of ligament and tendon injuries has been significant. Thanks to Professor Y.C. Fung's writing and guidance, our field of research has done fundamental work on anatomy and biology of ligaments and tendons, developed methods to accurately determine mechanical properties, identified various experimental factors which could change the outcome measurements as well as examined biological factors that change tissue properties in-vivo. Professor Fung also gave us his quasi-linear viscoelastic theory for soft tissues so that the time and history dependent properties of ligaments and tendons could be More >

  • Open Access

    ABSTRACT

    Biomechanics of Abdominal Aortic Aneurysms: Flow-Induced Wall Stress Distribution

    Christine M. Scotti1, Sergio L. Cornejo2, Ender A. Finol3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.1, pp. 41-48, 2007, DOI:10.3970/icces.2007.001.041

    Abstract Abdominal aortic aneurysm (AAA) rupture is believed to represent the culmination of a complex vascular mechanism partially driven by the forces exerted on the arterial wall. In the present investigation, we present fully coupled fluid-structure interaction (FSI) and finite element analysis (FEA) computations of a patient-specific AAA model. This work advances previous FSI AAA modeling by including localized intraluminal thrombus and the comparison of FSI- and FEA-predicted wall stress distributions. The FSI transient fluid and wall dynamics resulted in a maximum wall stress 21% higher than that obtained with FEA, demonstrating the importance of modeling More >

  • Open Access

    ARTICLE

    Regulation of Cyclic Longitudinal Mechanical Stretch on Proliferation of Human Bone Marrow Mesenchymal Stem Cells

    Guanbin Song∗,†,‡, Yang Ju∗,†,§, Hitoshi Soyama*, Toshiro Ohashi, Masaaki Sato

    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 201-210, 2007, DOI:10.3970/mcb.2007.004.201

    Abstract Mechanical stimulation is critical to both physiological and pathological states of living cells. Although a great deal of research has been done on biological and biochemical regulation of the behavior of bone marrow mesenchymal stem cells (MSCs), the influence of biomechanical factors on their behavior is still not fully documented. In this study, we investigated the modulation of mechanical stretch magnitude, frequency, and duration on the human marrow mesenchymal stem cells (hMSCs) proliferation by an in vitro model system using a mechanical stretch loading apparatus, and optimized the stretch regime for the proliferation of hMSCs.… More >

  • Open Access

    ARTICLE

    Optimizing the Mechanical Stimulus in Culture to Improve Construct Biomechanics for Tendon Repair

    V. S. Nirmalanandhan1, J. T. Shearn1, N. Juncosa-Melvin1, M. Rao1, A. Jain1, C. Gooch1, D. L. Butler1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 131-134, 2006, DOI:10.32604/mcb.2006.003.131

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Optimal Substrate Shape for Vesicle Adhesion on a Curved Substrate

    Wendong Shi∗,†, Xi-Qiao Feng*, Huajian Gao

    Molecular & Cellular Biomechanics, Vol.3, No.3, pp. 121-126, 2006, DOI:10.3970/mcb.2006.003.121

    Abstract When pulling a vesicle adhered on a substrate, both the force-displacement profile and the maximum force at pull-off are sensitively dependent upon the substrate shape. Here we consider the adhesion between a two-dimensional vesicle and a rigid substrate via long-range molecular interactions. For a given contact area, the theoretical pull-off force of the vesicle is obtained by multiplying the theoretical strength of adhesion and the contact area. It is shown that one may design an optimal substrate shape to achieve the theoretical pull-off force. More >

  • Open Access

    ARTICLE

    Remodeling of Strain Energy Function of Common Bile Duct post Obstruction

    Quang Dang1,1, Hans Gregersen2,2, Birgitte Duch2,2, Ghassan S. Kassab1,1

    Molecular & Cellular Biomechanics, Vol.2, No.2, pp. 53-62, 2005, DOI:10.3970/mcb.2005.002.053

    Abstract Biliary duct obstruction is an important clinical condition that affects millions of people worldwide. We have previously shown that the common bile duct (CBD) undergoes significant growth and remodelling post obstruction. The mechanical stress-strain relation is expected to change due to growth and remodeling in response to obstruction and hence pressure-overload. The objective of the present study was to characterize the material properties of the CBD of the sham group and at 3 hours, 12 hours, 2 days, 8 days and 32 days (n=5 in each group) after obstruction. The Fung's exponential strain energy function… More >

  • Open Access

    ARTICLE

    On the Inaugural of MCB: Molecular & Cellular Biomechanics

    X. Edward Guo1, Gang Bao1

    Molecular & Cellular Biomechanics, Vol.2, No.3, pp. 87-88, 2005, DOI:10.3970/mcb.2005.002.087

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Y.C. "Bert'' Fung: The Father of Modern Biomechanics

    Ghassan S. Kassab1

    Molecular & Cellular Biomechanics, Vol.1, No.1, pp. 5-22, 2004, DOI:10.3970/mcb.2004.001.005

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    A Method for Estimating Relative Bone Loads from CT Data with Application to the Radius and the Ulna

    K.J. Fischer1,2, J.A. Bastidas3, H.J. Pfaeffle2, J.D. Towers2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.3&4, pp. 397-404, 2003, DOI:10.3970/cmes.2003.004.397

    Abstract The two bones of the forearm, the radius and the ulna, have been shown to bear different proportions of the overall forearm load at the wrist and the elbow. This biomechanical data suggests load transfer between the bones occurs through the soft tissues of the forearm. Load transfer from radius to ulna through passive soft tissues such as the interosseous ligament (IOL) has been experimentally measured. Ex vivo studies of the forearm, however, cannot account for the effect of internal loads generated by the muscles and, in some cases, external forces acting directly on the… More >

  • Open Access

    EDITORIAL

    Biomechanics: A Current Perspective

    Angelo Carini1, Riccardo Pietrabissa2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.3&4, pp. 345-350, 2003, DOI:10.3970/cmes.2003.004.345

    Abstract This article has no abstract. More >

Displaying 61-70 on page 7 of 71. Per Page