Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (206)
  • Open Access

    ARTICLE

    An Iterative Boundary Element Method for the Solution of a Cauchy Steady State Heat Conduction Problem

    N.S. Mera, L. Elliott, D.B. Ingham, D. Lesnic1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 101-106, 2000, DOI:10.3970/cmes.2000.001.403

    Abstract In this paper the iterative algorithm proposed by [Kozlov and Maz'ya (1990)] for the backward heat conduction problem is extended in order to solve the Cauchy steady state heat conduction problem and the accuracy, convergence and stability of the numerical algorithm are investigated. The numerical results which are obtained confirm that this new iterative BEM procedure is accurate, convergent and stable with respect to increasing the number of boundary elements and decreasing the amount of noise which is added into the input data. More >

  • Open Access

    ARTICLE

    A Boundary Element Model for Underwater Acoustics in Shallow Water

    J.A.F. Santiago1, L.C. Wrobel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 73-80, 2000, DOI:10.3970/cmes.2000.001.375

    Abstract This work presents a boundary element formulation for two-dimensional acoustic wave propagation in shallow water. It is assumed that the velocity of sound in water is constant, the free surface is horizontal, and the seabed is irregular. The boundary conditions of the problem are that the sea bottom is rigid and the free surface pressure is atmospheric.
    For regions of constant depth, fundamental solutions in the form of infinite series can be employed in order to avoid the discretisation of both the free surface and bottom boundaries. When the seabed topography is irregular, it is necessary to divide the… More >

  • Open Access

    ARTICLE

    Static and Dynamic Analysis of Shell Panels Using the Analog Equation Method

    A.J. Yiotis1, J.T. Katsikadelis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.2, pp. 95-104, 2000, DOI:10.3970/cmes.2000.001.255

    Abstract The Analog Equation Method is applied to the static and dynamic analysis of thin cylindrical shell panels. The Fl\"{u}gge theory is adopted. The three displacement components are established by solving two membrane and one plate bending problems under the same boundary conditions subjected to "appropriate'' (equivalent) fictitious loads. Numerical results are presented which illustrate the efficiency and the accuracy of the proposed method. More >

  • Open Access

    ARTICLE

    Design and Fabrication of an Electrostatic Variable Gap Comb Drive in Micro-Electro-Mechanical Systems

    Wenjing Ye1, Subrata Mukherjee2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 111-120, 2000, DOI:10.3970/cmes.2000.001.111

    Abstract Polynomial driving-force comb drives are designed using numerical simulation. The electrode shapes are obtained using the indirect boundary element method. Variable gap comb drives that produce combinations of linear, quadratic, and cubic driving-force profiles are synthesized. This inverse problem is solved by an optimization procedure. Sensitivity analysis is carried out by the direct differentiation approach (DDA) in order to compute design sensitivity coefficients (DSCs) of force profiles with respect to parameters that define the shapes of the fingers of a comb drive. The DSCs are then used to drive iterative optimization procedures. Designs of variable gap comb drives with linear,… More >

  • Open Access

    ARTICLE

    Progression of failure in fiber-reinforced materials

    R. Han1, M.S. Ingber1, H.L. Schreyer1

    CMC-Computers, Materials & Continua, Vol.4, No.3, pp. 163-176, 2006, DOI:10.3970/cmc.2006.004.163

    Abstract Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interfaces in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones and the propagation of cracks… More >

  • Open Access

    ARTICLE

    A Novel Approach to Identify the Thermal Conductivities of a Thin Anisotropic Medium by the Boundary Element Method

    Y.C. Shiah1, Y.M. Lee2, T.C. Huang2

    CMC-Computers, Materials & Continua, Vol.39, No.1, pp. 49-71, 2014, DOI:10.3970/cmc.2014.039.049

    Abstract A common difficulty arises in characterizing the anisotropic properties of a thin sheet of anisotropic material, especially in the transverse direction. This difficulty is even more phenomenal for measuring its mechanical properties on account of its thickness. As the prelude of such investigation, this paper proposes a novel approach to identify the thermal conductivities of an unknown thin layer of anisotropic material. For this purpose, the unknown layer is sandwiched in isotropic materials with known conductivities. Prescribing proper boundary conditions, one may easily measure temperature data on a few sample boundary points. Therefore, the anisotropic thermal conductivities can be calculated… More >

  • Open Access

    ARTICLE

    Flexural - Torsional Nonlinear Analysis of Timoshenko Beam-Column of Arbitrary Cross Section by BEM

    E.J. Sapountzakis1, J.A. Dourakopoulos1

    CMC-Computers, Materials & Continua, Vol.18, No.2, pp. 121-154, 2010, DOI:10.3970/cmc.2010.018.121

    Abstract In this paper a boundary element method is developed for the nonlinear flexural - torsional analysis of Timoshenko beam-columns of arbitrary simply or multiply connected constant cross section, undergoing moderate large deflections under general boundary conditions. The beam-column is subjected to the combined action of an arbitrarily distributed or concentrated axial and transverse loading as well as to bending and twisting moments. To account for shear deformations, the concept of shear deformation coefficients is used. Seven boundary value problems are formulated with respect to the transverse displacements, to the axial displacement, to the angle of twist (which is assumed to… More >

  • Open Access

    ARTICLE

    Relaxation of Alternating Iterative Algorithms for the Cauchy Problem Associated with the Modified Helmholtz Equation

    B. Tomas Johansson1, Liviu Marin2

    CMC-Computers, Materials & Continua, Vol.13, No.2, pp. 153-190, 2009, DOI:10.3970/cmc.2009.013.153

    Abstract We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over-specified boundary, in the case of the alternating iterative algorithm of Kozlov, Maz'ya and Fomin(1991) applied to Cauchy problems for the modified Helmholtz equation. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed methods. More >

  • Open Access

    ARTICLE

    Buckling Analysis of Plates Stiffened by Parallel Beams

    E.J. Sapountzakis1, V.G. Mokos1

    CMC-Computers, Materials & Continua, Vol.12, No.2, pp. 157-196, 2009, DOI:10.3970/cmc.2009.012.157

    Abstract In this paper a general solution for the elastic buckling analysis of plates stiffened by arbitrarily placed parallel beams of arbitrary doubly symmetric cross section subjected to an arbitrary inplane loading is presented. According to the proposed model, the stiffening beams are isolated from the plate by sections in the lower outer surface of the plate, taking into account the arising tractions in all directions at the fictitious interfaces. These tractions are integrated with respect to each half of the interface width resulting two interface lines, along which the loading of the beams as well as the additional loading of… More >

  • Open Access

    ARTICLE

    Singular Superposition/Boundary Element Method for Reconstruction of Multi-dimensional Heat Flux Distributions with Application to Film Cooling Holes

    Silieti, M.1, Divo, E.2, Kassab, A.J.1

    CMC-Computers, Materials & Continua, Vol.12, No.2, pp. 121-144, 2009, DOI:10.3970/cmc.2009.012.121

    Abstract A hybrid singularity superposition/boundary element-based inverse problem method for the reconstruction of multi-dimensional heat flux distributions is developed. Cauchy conditions are imposed at exposed surfaces that are readily reached for measurements while convective boundary conditions are unknown at surfaces that are not amenable to measurements such as the walls of the cooling holes. The purpose of the inverse analysis is to determine the heat flux distribution along cooling hole surfaces. This is accomplished in an iterative process by distributing a set of singularities (sinks) inside the physical boundaries of the cooling hole (usually along cooling hole centerline) with a given… More >

Displaying 191-200 on page 20 of 206. Per Page