Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (206)
  • Open Access

    ARTICLE

    Meshless BEM for Three-dimensional Stokes Flows

    C.C. Tsai1, D.L. Young2, A.H.-D. Cheng3

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.1, pp. 117-128, 2002, DOI:10.3970/cmes.2002.003.117

    Abstract This paper describes a combination of the dual reciprocity method (DRM) and the method of fundamental solution (MFS) as a meshless BEM (DRM-MFS) to solve three-dimensional Stokes flow problems by the velocity-vorticity formulation, where the DRM is based on the compactly supported, positive definite radial basis functions (CS-PD-RBF). In the velocity-vorticity formulation, both of the diffusion type vorticity equations and the Poisson type velocity equations are solved by DRM-MFS. Here a typical internal cubic cavity flow and an external flow past a sphere are presented. The results are acceptable. Furthermore, this paper provides a preliminary work for applications to the… More >

  • Open Access

    ARTICLE

    The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple & Less-costly Alternative to the Finite Element and Boundary Element Methods

    Satya N. Atluri1, Shengping Shen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.1, pp. 11-52, 2002, DOI:10.3970/cmes.2002.003.011

    Abstract A comparison study of the efficiency and accuracy of a variety of meshless trial and test functions is presented in this paper, based on the general concept of the meshless local Petrov-Galerkin (MLPG) method. 5 types of trial functions, and 6 types of test functions are explored. Different test functions result in different MLPG methods, and six such MLPG methods are presented in this paper. In all these six MLPG methods, absolutely no meshes are needed either for the interpolation of the trial and test functions, or for the integration of the weak-form; while other meshless methods require background cells.… More >

  • Open Access

    ARTICLE

    Boundary Element Analysis of Curved Cracked Panels with Mechanically Fastened Repair Patches

    P. H. Wen1, M. H. Aliabadi1, A. Young2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.1, pp. 1-10, 2002, DOI:10.3970/cmes.2002.003.001

    Abstract In this paper, applications of the boundary element method to damaged and undamaged aircraft curved panels with mechanical repairs are presented. The effects of fastened repairs are replaced by uniform distribution forces in the area of cross-section of the rivet and can be determined from the compatibility condition of displacements. A coupled boundary integral formulation of a shear deformable plate and two dimensional plane stress elasticity is used to determine the bending and membrane forces on the rivets. Domain integrals in each integral equation are determined using the dual reciprocity method. The stress intensity factors due to bending and membrane… More >

  • Open Access

    ARTICLE

    Steady Heat Conduction Analysis in Orthotropic Bodies by Triple-reciprocity BEM

    Y. Ochiai

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.4, pp. 435-446, 2001, DOI:10.3970/cmes.2001.002.435

    Abstract The boundary element method (BEM) is useful in solving the steady heat conduction problem of orthotropic bodies without heat generation. However, for cases with arbitrary heat generation, a number of internal cells are necessary. In this paper, it is shown that the problem of steady heat conduction in orthotropic bodies with heat generation can be solved without internal cells by the triple-reciprocity BEM. In this method, the distribution of heat generation is interpolated using integral equations. In order to solve the problem, the values of heat generation at internal points and on the boundary are used. Furthermore, a new interpolation… More >

  • Open Access

    ARTICLE

    Thermal Stress Analysis of Multi-layer Thin Films and Coatings by an Advanced Boundary Element Method

    Xiaolin Chen, Yijun Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.3, pp. 337-350, 2001, DOI:10.3970/cmes.2001.002.337

    Abstract An advanced boundary element method (BEM) is developed in this paper for analyzing thin layered structures, such as thin films and coatings, under the thermal loading. The boundary integral equation (BIE) formulation for steady-state thermoelasticity is reviewed and a special case, that is, the BIE for a uniform distribution of the temperature change, is presented. The new nearly-singular integrals arising from the applications of the BIE/BEM to thin layered structures under thermal loading are treated in the same way as developed earlier for thin structures under the mechanical loading. Three 2-D test problems involving layered thin films and coatings on… More >

  • Open Access

    ARTICLE

    Determining the Unknown Traction of a Cracked Elastic Body Using the Inverse Technique with the Dual Boundary Element Method

    Ru-Min Chao, Yen-Ji Chen, F.C. Lin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.1, pp. 73-86, 2001, DOI:10.3970/cmes.2001.002.073

    Abstract The two-dimensional elasticity problem of an isotropic material, containing a centered-crack with unknown boundary traction is studied by the inverse procedure. The dual boundary integral equations are used to analyze the problem. While solving the ill-posed inverse problem, both of the conjugate gradient method and the regularization method are used. A scaling factor depending upon the material constant μ is introduced into the sensitivity matrix in order to keep the order of magnitude the same throughout the formulation. The result by using the displacement measurement will be compared with those by stress measurement, and an extensive discussion will be given.… More >

  • Open Access

    ARTICLE

    A 3-D Boundary Element Method for Dynamic Analysis of Anisotropic Elastic Solids1

    M. Kögl, L. Gaul2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.4, pp. 27-44, 2000, DOI:10.3970/cmes.2000.001.479

    Abstract A Boundary Element formulation is presented for the solution of three-dimensional problems of anisotropic elastodynamics. Due to the complexity of the dynamic fundamental solutions for anisotropic materials and the resulting high computational costs, the approach at hand uses the fundamental solution of the static operator. This leads to a domain integral in the representation formula which contains the inertia term. The domain integral can be transformed to the boundary using the Dual Reciprocity Method. This results in a system of ordinary differential equations in time with time-independent matrices. Several general questions concerning the anisotropic solutions, the use of DRM, and… More >

  • Open Access

    ARTICLE

    Solving Rolling Contact Problems Using Boundary Element Method and Mathematical Programming Algorithms

    José A. González, Ramón Abascal1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 141-150, 2000, DOI:10.3970/cmes.2000.001.443

    Abstract In this work an approach to the two-dimensional steady-state rolling contact problem, with and without force transmission, is presented. The problem is solved by the combination of the Boundary Element Method with a formulation of the variational inequalities that govern the problem in the contact area, producing finally a mathematical programming problem. This formulation avoids the direct use of the contact constrains, but it drives to the minimisation of a non-differentiable function, being necessary the use of an specific numerical tool as the modified Newton's method. More >

  • Open Access

    ARTICLE

    BEM / FEM Comparison Studies for the Inelastic Dynamic Analysis of Thick Plates on Elastic Foundation

    C.P . Providakis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 123-130, 2000, DOI:10.3970/cmes.2000.001.425

    Abstract Boundary and Finite Element methodologies for the determination of the inelastic response of thick plates resting on Winkler-type elastic foundations are compared and critically discussed. For comparison reasons the domain/boundary element and the finite element methodology use isoparametric elements of the same accuracy level. After a discretizaton of the integral equations of motion in both methodologies an efficient step-by-step time integration algorithm is used to solve the resulting matrix equations. Comparison studies are shown for impacted elastoplastic thick plates with smooth boundaries and supported on different Winkler-type foundations. The numerical results reveal that boundary element method appears to be a… More >

  • Open Access

    ARTICLE

    An Inverse Boundary Element Method for Determining the Hydraulic Conductivity in Anisotropic Rocks

    R. Mustata1, S. D. Harris2, L. Elliott1, D. Lesnic1, D. B. Ingham1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 107-116, 2000, DOI:10.3970/cmes.2000.001.409

    Abstract An inverse boundary element method is developed to characterise the components of the hydraulic conductivity tensor K of anisotropic materials. Surface measurements at exposed boundaries serve as additional input to a Genetic Algorithm (GA) using a modified least squares functional that minimises the difference between observed and BEM-predicted boundary pressure and/or hydraulic flux measurements under current hydraulic conductivity tensor component estimates. More >

Displaying 181-190 on page 19 of 206. Per Page