Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (63)
  • Open Access

    ARTICLE

    A U-Net-Based CNN Model for Detection and Segmentation of Brain Tumor

    Rehana Ghulam1, Sammar Fatima1, Tariq Ali1, Nazir Ahmad Zafar1, Abdullah A. Asiri2, Hassan A. Alshamrani2,*, Samar M. Alqhtani3, Khlood M. Mehdar4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1333-1349, 2023, DOI:10.32604/cmc.2023.031695

    Abstract Human brain consists of millions of cells to control the overall structure of the human body. When these cells start behaving abnormally, then brain tumors occurred. Precise and initial stage brain tumor detection has always been an issue in the field of medicines for medical experts. To handle this issue, various deep learning techniques for brain tumor detection and segmentation techniques have been developed, which worked on different datasets to obtain fruitful results, but the problem still exists for the initial stage of detection of brain tumors to save human lives. For this purpose, we proposed a novel U-Net-based Convolutional… More >

  • Open Access

    ARTICLE

    RBEBT: A ResNet-Based BA-ELM for Brain Tumor Classification

    Ziquan Zhu1, Muhammad Attique Khan2, Shui-Hua Wang1, Yu-Dong Zhang1,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 101-111, 2023, DOI:10.32604/cmc.2023.030790

    Abstract Brain tumor refers to the formation of abnormal cells in the brain. It can be divided into benign and malignant. The main diagnostic methods for brain tumors are plain X-ray film, Magnetic resonance imaging (MRI), and so on. However, these artificial diagnosis methods are easily affected by external factors. Scholars have made such impressive progress in brain tumors classification by using convolutional neural network (CNN). However, there are still some problems: (i) There are many parameters in CNN, which require much calculation. (ii) The brain tumor data sets are relatively small, which may lead to the overfitting problem in CNN.… More >

  • Open Access

    ARTICLE

    Brain Tumor Classification Using Image Fusion and EFPA-SVM Classifier

    P. P. Fathimathul Rajeena1,*, R. Sivakumar2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2837-2855, 2023, DOI:10.32604/iasc.2023.030144

    Abstract An accurate and early diagnosis of brain tumors based on medical imaging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide. Several medical imaging techniques have been used to analyze brain tumors, including computed tomography (CT) and magnetic resonance imaging (MRI). CT provides information about dense tissues, whereas MRI gives information about soft tissues. However, the fusion of CT and MRI images has little effect on enhancing the accuracy of the diagnosis of brain tumors. Therefore, machine learning methods have been adopted to diagnose brain tumors in recent years. This paper intends… More >

  • Open Access

    ARTICLE

    Block-Wise Neural Network for Brain Tumor Identification in Magnetic Resonance Images

    Abdullah A. Asiri1, Muhammad Aamir2, Ahmad Shaf2,*, Tariq Ali2, Muhammad Zeeshan3, Muhammad Irfan4, Khalaf A. Alshamrani1, Hassan A. Alshamrani1, Fawaz F. Alqahtani1, Ali H. D. Alshehri1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5735-5753, 2022, DOI:10.32604/cmc.2022.031747

    Abstract The precise brain tumor diagnosis is critical and shows a vital role in the medical support for treating tumor patients. Manual brain tumor segmentation for cancer analysis from many Magnetic Resonance Images (MRIs) created in medical practice is a problematic and timewasting task for experts. As a result, there is a critical necessity for more accurate computer-aided methods for early tumor detection. To remove this gap, we enhanced the computational power of a computer-aided system by proposing a fine-tuned Block-Wise Visual Geometry Group19 (BW-VGG19) architecture. In this method, a pre-trained VGG19 is fine-tuned with CNN architecture in the block-wise mechanism… More >

  • Open Access

    ARTICLE

    Brain Tumor Detection and Classification Using PSO and Convolutional Neural Network

    Muhammad Ali1, Jamal Hussain Shah1, Muhammad Attique Khan2, Majed Alhaisoni3, Usman Tariq4, Tallha Akram5, Ye Jin Kim6, Byoungchol Chang7,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4501-4518, 2022, DOI:10.32604/cmc.2022.030392

    Abstract Tumor detection has been an active research topic in recent years due to the high mortality rate. Computer vision (CV) and image processing techniques have recently become popular for detecting tumors in MRI images. The automated detection process is simpler and takes less time than manual processing. In addition, the difference in the expanding shape of brain tumor tissues complicates and complicates tumor detection for clinicians. We proposed a new framework for tumor detection as well as tumor classification into relevant categories in this paper. For tumor segmentation, the proposed framework employs the Particle Swarm Optimization (PSO) algorithm, and for… More >

  • Open Access

    ARTICLE

    A Novel Handcrafted with Deep Features Based Brain Tumor Diagnosis Model

    Abdul Rahaman Wahab Sait1,*, Mohamad Khairi Ishak2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2057-2070, 2023, DOI:10.32604/iasc.2023.029602

    Abstract In healthcare sector, image classification is one of the crucial problems that impact the quality output from image processing domain. The purpose of image classification is to categorize different healthcare images under various class labels which in turn helps in the detection and management of diseases. Magnetic Resonance Imaging (MRI) is one of the effective non-invasive strategies that generate a huge and distinct number of tissue contrasts in every imaging modality. This technique is commonly utilized by healthcare professionals for Brain Tumor (BT) diagnosis. With recent advancements in Machine Learning (ML) and Deep Learning (DL) models, it is possible to… More >

  • Open Access

    ARTICLE

    Analysis of Brain MRI: AI-Assisted Healthcare Framework for the Smart Cities

    Walid El-Shafai1,*, Randa Ali1, Ahmed Sedik2, Taha El-Sayed Taha1, Mohammed Abd-Elnaby3, Fathi E. Abd El-Samie1

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1843-1856, 2023, DOI:10.32604/iasc.2023.019198

    Abstract The use of intelligent machines to work and react like humans is vital in emerging smart cities. Computer-aided analysis of complex and huge MRI (Magnetic Resonance Imaging) scans is very important in healthcare applications. Among AI (Artificial Intelligence) driven healthcare applications, tumor detection is one of the contemporary research fields that have become attractive to researchers. There are several modalities of imaging performed on the brain for the purpose of tumor detection. This paper offers a deep learning approach for detecting brain tumors from MR (Magnetic Resonance) images based on changes in the division of the training and testing data… More >

  • Open Access

    ARTICLE

    A Novel Inherited Modeling Structure of Automatic Brain Tumor Segmentation from MRI

    Abdullah A. Asiri1, Tariq Ali2, Ahmad Shaf2, Muhammad Aamir2, Muhammad Shoaib3, Muhammad Irfan4, Hassan A. Alshamrani1,*, Fawaz F. Alqahtani1, Osama M. Alshehri5

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3983-4002, 2022, DOI:10.32604/cmc.2022.030923

    Abstract Brain tumor is one of the most dreadful worldwide types of cancer and affects people leading to death. Magnetic resonance imaging methods capture skull images that contain healthy and affected tissue. Radiologists checked the affected tissue in the slice-by-slice manner, which was time-consuming and hectic task. Therefore, auto segmentation of the affected part is needed to facilitate radiologists. Therefore, we have considered a hybrid model that inherits the convolutional neural network (CNN) properties to the support vector machine (SVM) for the auto-segmented brain tumor region. The CNN model is initially used to detect brain tumors, while SVM is integrated to… More >

  • Open Access

    ARTICLE

    Cartesian Product Based Transfer Learning Implementation for Brain Tumor Classification

    Irfan Ahmed Usmani1,*, Muhammad Tahir Qadri1, Razia Zia1, Asif Aziz2, Farheen Saeed3

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4369-4392, 2022, DOI:10.32604/cmc.2022.030698

    Abstract Knowledge-based transfer learning techniques have shown good performance for brain tumor classification, especially with small datasets. However, to obtain an optimized model for targeted brain tumor classification, it is challenging to select a pre-trained deep learning (DL) model, optimal values of hyperparameters, and optimization algorithm (solver). This paper first presents a brief review of recent literature related to brain tumor classification. Secondly, a robust framework for implementing the transfer learning technique is proposed. In the proposed framework, a Cartesian product matrix is generated to determine the optimal values of the two important hyperparameters: batch size and learning rate. An extensive… More >

  • Open Access

    ARTICLE

    Brain Tumor Diagnosis Using Sparrow Search Algorithm Based Deep Learning Model

    G. Ignisha Rajathi1, R. Ramesh Kumar2, D. Ravikumar3, T. Joel4, Seifedine Kadry4,5, Chang-Won Jeong6, Yunyoung Nam7,*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1793-1806, 2023, DOI:10.32604/csse.2023.024674

    Abstract Recently, Internet of Medical Things (IoMT) has gained considerable attention to provide improved healthcare services to patients. Since earlier diagnosis of brain tumor (BT) using medical imaging becomes an essential task, automated IoMT and cloud enabled BT diagnosis model can be devised using recent deep learning models. With this motivation, this paper introduces a novel IoMT and cloud enabled BT diagnosis model, named IoMTC-HDBT. The IoMTC-HDBT model comprises the data acquisition process by the use of IoMT devices which captures the magnetic resonance imaging (MRI) brain images and transmit them to the cloud server. Besides, adaptive window filtering (AWF) based… More >

Displaying 31-40 on page 4 of 63. Per Page