Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Automatic Pancreas Segmentation in CT Images Using EfficientNetV2 and Multi-Branch Structure

    Panru Liang1, Guojiang Xin1,*, Xiaolei Yi2, Hao Liang3, Changsong Ding1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2481-2504, 2025, DOI:10.32604/cmc.2025.060961 - 16 April 2025

    Abstract Automatic pancreas segmentation plays a pivotal role in assisting physicians with diagnosing pancreatic diseases, facilitating treatment evaluations, and designing surgical plans. Due to the pancreas’s tiny size, significant variability in shape and location, and low contrast with surrounding tissues, achieving high segmentation accuracy remains challenging. To improve segmentation precision, we propose a novel network utilizing EfficientNetV2 and multi-branch structures for automatically segmenting the pancreas from CT images. Firstly, an EfficientNetV2 encoder is employed to extract complex and multi-level features, enhancing the model’s ability to capture the pancreas’s intricate morphology. Then, a residual multi-branch dilated attention… More >

  • Open Access

    ARTICLE

    A Global-Local Parallel Dual-Branch Deep Learning Model with Attention-Enhanced Feature Fusion for Brain Tumor MRI Classification

    Zhiyong Li, Xinlian Zhou*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 739-760, 2025, DOI:10.32604/cmc.2025.059807 - 26 March 2025

    Abstract Brain tumor classification is crucial for personalized treatment planning. Although deep learning-based Artificial Intelligence (AI) models can automatically analyze tumor images, fine details of small tumor regions may be overlooked during global feature extraction. Therefore, we propose a brain tumor Magnetic Resonance Imaging (MRI) classification model based on a global-local parallel dual-branch structure. The global branch employs ResNet50 with a Multi-Head Self-Attention (MHSA) to capture global contextual information from whole brain images, while the local branch utilizes VGG16 to extract fine-grained features from segmented brain tumor regions. The features from both branches are processed through More >

  • Open Access

    ARTICLE

    Large Eddy Simulation of Gasoline-Air Mixture Explosion in Long Duct with Branch Structure

    Chong Liu, Yang Du, Jianjun Liang, Hong Meng, Jian Wang, Peili Zhang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 537-547, 2020, DOI:10.32604/fdmp.2020.09119 - 25 May 2020

    Abstract Gas explosion is a process involving complex hydrodynamics and chemical reactions. In order to investigate the interaction between the flame behavior and the dynamic overpressure resulting from the explosion of a premixed gasoline-air mixture in a confined space, a large eddy simulation (LES) strategy coupled with sub-grid combustion model has been implemented. The considered confined space consists of a long duct and four branches symmetrically distributed on both sides of the long duct. Comparisons between the simulated and experimental results have been considered with regard to the flame structure, flame speed and overpressure characteristics. It… More >

Displaying 1-10 on page 1 of 3. Per Page