Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Modeling and Predictive Analytics of Breast Cancer Using Ensemble Learning Techniques: An Explainable Artificial Intelligence Approach

    Avi Deb Raha1, Fatema Jannat Dihan2, Mrityunjoy Gain1, Saydul Akbar Murad3, Apurba Adhikary2, Md. Bipul Hossain2, Md. Mehedi Hassan1, Taher Al-Shehari4, Nasser A. Alsadhan5, Mohammed Kadrie4, Anupam Kumar Bairagi1,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4033-4048, 2024, DOI:10.32604/cmc.2024.057415 - 19 December 2024

    Abstract Breast cancer stands as one of the world’s most perilous and formidable diseases, having recently surpassed lung cancer as the most prevalent cancer type. This disease arises when cells in the breast undergo unregulated proliferation, resulting in the formation of a tumor that has the capacity to invade surrounding tissues. It is not confined to a specific gender; both men and women can be diagnosed with breast cancer, although it is more frequently observed in women. Early detection is pivotal in mitigating its mortality rate. The key to curbing its mortality lies in early detection.… More >

  • Open Access

    ARTICLE

    A Deep Learning Breast Cancer Prediction Framework

    Asmaa E. E. Ali*, Mofreh Mohamed Salem, Mahmoud Badway, Ali I. EL Desouky

    Journal on Artificial Intelligence, Vol.3, No.3, pp. 81-96, 2021, DOI:10.32604/jai.2021.022433 - 25 January 2022

    Abstract Breast cancer (BrC) is now the world’s leading cause of death for women. Early detection and effective treatment of this disease are the only rescues to reduce BrC mortality. The prediction of BrC diseases is very difficult because it is not an individual disease but a mixture of various diseases. Many researchers have used different techniques such as classification, Machine Learning (ML), and Deep Learning (DL) of the prediction of the breast tumor into Benign and Malignant. However, still there is a scope to introduce appropriate techniques for developing and implementing a more effective diagnosis… More >

  • Open Access

    ARTICLE

    A New Optimized Wrapper Gene Selection Method for Breast Cancer Prediction

    Heyam H. Al-Baity*, Nourah Al-Mutlaq

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3089-3106, 2021, DOI:10.32604/cmc.2021.015291 - 01 March 2021

    Abstract Machine-learning algorithms have been widely used in breast cancer diagnosis to help pathologists and physicians in the decision-making process. However, the high dimensionality of genetic data makes the classification process a challenging task. In this paper, we propose a new optimized wrapper gene selection method that is based on a nature-inspired algorithm (simulated annealing (SA)), which will help select the most informative genes for breast cancer prediction. These optimal genes will then be used to train the classifier to improve its accuracy and efficiency. Three supervised machine-learning algorithms, namely, the support vector machine, the decision… More >

  • Open Access

    ARTICLE

    Intelligent Breast Cancer Prediction Empowered with Fusion and Deep Learning

    Shahan Yamin Siddiqui1,2, Iftikhar Naseer3, Muhammad Adnan Khan4, Muhammad Faheem Mushtaq5, Rizwan Ali Naqvi6,*, Dildar Hussain7, Amir Haider8

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 1033-1049, 2021, DOI:10.32604/cmc.2021.013952 - 12 January 2021

    Abstract Breast cancer is the most frequently detected tumor that eventually could result in a significant increase in female mortality globally. According to clinical statistics, one woman out of eight is under the threat of breast cancer. Lifestyle and inheritance patterns may be a reason behind its spread among women. However, some preventive measures, such as tests and periodic clinical checks can mitigate its risk thereby, improving its survival chances substantially. Early diagnosis and initial stage treatment can help increase the survival rate. For that purpose, pathologists can gather support from nondestructive and efficient computer-aided diagnosis… More >

Displaying 1-10 on page 1 of 4. Per Page