Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer

    Yu Zhang*, Sheng Wang, Fanming Zeng, Yijie Lin

    Energy Engineering, Vol.122, No.3, pp. 1137-1151, 2025, DOI:10.32604/ee.2025.060945 - 07 March 2025

    Abstract With the development of renewable energy technologies such as photovoltaics and wind power, it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement. To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy, while simultaneously enhancing user satisfaction on the demand side, this paper introduces an improved multi-objective Grey Wolf Optimizer based on Cauchy variation. The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of… More > Graphic Abstract

    CCHP-Type Micro-Grid Scheduling Optimization Based on Improved Multi-Objective Grey Wolf Optimizer

  • Open Access

    ARTICLE

    Dynamic Simulation and Performance Analysis on Multi-Energy Coupled CCHP System

    Xueqin Tian1, Jinfei Sun2, Tong Xu1, Mengran Cui2, Xinlei Wang1, Jianxiang Guo2, De-gejirifu1,*, Na Wang1

    Energy Engineering, Vol.119, No.2, pp. 723-737, 2022, DOI:10.32604/ee.2022.015982 - 24 January 2022

    Abstract Although the Combined Cooing, Heating and Power System (hereinafter referred to as “CCHP”) improves the capacity utilization rate and energy utilization efficiency, single use of CCHP system cannot realize dynamic matching between supply and demand loads due to the unbalance features of the user’s cooling and heating loads. On the basis of user convenience and wide applicability of clean air energy, this paper tries to put forward a coupled CCHP system with combustion gas turbine and ASHP ordered power by heat, analyze trends of such parameters as gas consumption and power consumption of heat pump… More >

  • Open Access

    ARTICLE

    Operation Strategy Analysis and Configuration Optimization of Solar CCHP System

    Duojin Fan1, Chengji Shi2, Kai Sun2, Xiaojuan Lu2,*

    Energy Engineering, Vol.118, No.4, pp. 1197-1221, 2021, DOI:10.32604/EE.2021.014532 - 31 May 2021

    Abstract This paper proposed a new type of combined cooling heating and power (CCHP) system, including the parabolic trough solar thermal (PTST) power generation and gas turbine power generation. The thermal energy storage subsystem in the PTST unit provides both thermal energy and electrical energy. Based on the life cycle method, the configuration optimization under eight operation strategies is studied with the economy, energy, and environment indicators. The eight operation strategies include FEL, FEL-EC, FEL-TES, FEL-TES&EC, FTL, FTL-EC, FTL-TES, and FTL-TES&EC. The feasibility of each strategy is verified by taking a residential building cluster as an… More >

  • Open Access

    ARTICLE

    Study on Buildings CCHP System Based on SOFC

    Bin Zhang*, Yongzhen Wang, Jiaqing Zheng, Dan Liu

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 665-674, 2020, DOI:10.32604/fdmp.2020.09314 - 25 May 2020

    Abstract The relationship among the working temperature, pressure and current density of a Solid oxide fuel cell (SOFC) and its output power and efficiency are analyzed in the framework of a theoretical model able to provide, among other things, the volt ampere characteristic curve. In particular, following the principle of temperature matching and cascade utilization, we consider a gas turbine (GT) and a LiBr absorption chiller to recycle the high-grade exhaust heat produced by the considered SOFC. This distributed total energy system is set up with the intent to meet typical needs of buildings for cooling, More >

Displaying 1-10 on page 1 of 4. Per Page