Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (150)
  • Open Access

    ARTICLE

    CFD Simulation of a Bag Filter for a 200MW Power Plant

    Yukun Lv, Jiaxi Yang*, Jing Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1191-1202, 2020, DOI:10.32604/fdmp.2020.010302

    Abstract The combustion of pulverized coal inevitably produces dust and other harmful substances. For these reasons, the optimization of de-dusting procedure and equipments is an aspect of crucial importance towards the final goal of making this source of energy more sustainable. In the present work, the behaviour of a “bag filter” is simulated using Computational Fluid Dynamics (CFD). More specifically, three possible approaches are used, differing with respect to the level of fidelity and the partial utilization of empirical data. The outcome of these simulations is mutually compared and finally discussed critically in the light of available experimental results. More >

  • Open Access

    ARTICLE

    CFD Simulation and Experimental Study of a New Elastic Blade Wave Energy Converter

    Chongfei Sun1, Jianzhong Shang1, Zirong Luo1, Xin Li2,*, Zhongyue Lu1, Guoheng Wu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1147-1159, 2020, DOI:10.32604/fdmp.2020.09937

    Abstract Small moving vehicles represent an important category of marine engineering tools and devices (equipment) typically used for ocean resource detection and maintenance of marine rights and interests. The lack of efficient power supply modes is one of the technical bottlenecks restricting the effective utilisation of this type of equipment. In this work, the performance characteristics of a new type of elastic-blade/wave-energy converter (EBWEC) and its core energy conversion component (named wave energy absorber) are comprehensively studied. In particular, computational fluid dynamics (CFD) simulations and experiments have been used to analyze the hydrodynamics and performance characteristics of the EBWEC. The pressure… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Pressure Distribution in a Brush Seal Based on a 2‐D Staggered Tube Banks Model

    Yuchi Kang1,2, Meihong Liu1, Sharon Kao‐Walter2,3, Jinbin Liu1, Qihong Cen4

    Intelligent Automation & Soft Computing, Vol.25, No.2, pp. 405-411, 2019, DOI:10.31209/2019.100000102

    Abstract A two-dimensional model of staggered tube banks of the bristle pack with different pitch ratios was solved by computational fluid dynamics (CFD). The pressure distribution along the gap centerlines and bristle surfaces were studied for different upstream pressure from 0.2 to 0.6MPa and models. The results show that the pressure is exponentially rather than strictly linearly decreasing distributed inside the bristle pack. The pressure distribution is symmetry about the circle’s horizontal line. The most obvious pressure drop occurred from about 60º to 90º. There is no stationary state reached between the kinetic energy and the static pressure when the upstream… More >

  • Open Access

    ARTICLE

    Novel Micromixer with Complex 3D-Shape Inner Units: Design, Simulation and Additive Manufacturing

    Di Wang1, Guangzhao Ye1, Jingming Mai2, Xiaomin Chen1, Yongqiang Yang1,*, Yang Li1,*, Xiaojun Chen1, Jie Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1061-1077, 2020, DOI:10.32604/cmes.2020.09842

    Abstract In this paper, a novel micromixer with complex 3D-shape inner units was put forward and fabricated by metal Additive Manufacturing (AM). The design of the micromixer combined the constraints of selective laser melting technology and the factors to improve mixing efficiency. Villermaux-Dushman reaction system and Compute Fluid Design (CFD) simulation were conducted to investigate the performance and the mechanism of this novel micromixer to improve mixing efficiency. The research found that the best mixing efficiency of this novel micromixer could be gained when the inner units divided fluid into five pieces with a uniform volume. Compared with a conventional micromixer… More >

  • Open Access

    ARTICLE

    CFD-Based Optimization of Hot Primary-Air Pipe Networks in Power Plant Milling Systems

    Qingyun Yan1, You Li2, Yuanhong Zhu3, Kui Cheng3, Xueli Huang3, Cong Qi3, Xuemin Ye2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 623-636, 2020, DOI:10.32604/fdmp.2020.09669

    Abstract A hot primary-air pipe system is the bridge connecting an air-preheater with a coal mill in power generation stations. The effective geometrical configuration of the pipe network greatly affects the air flow distribution and consequently influences the safe and economic operation of milling systems in power stations. In order to improve the properties of the air flow, in the present work the SIMPLEC method is used to simulate numerically the flow field for the original layout of the system. As a result, the internal mechanisms influencing the uneven pressure drop in each branch are explored and three optimization schemes are… More >

  • Open Access

    ARTICLE

    Simulation of the Thermal Environment and Velocity Distribution in a Lecture Hall

    Guolin Li*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 549-559, 2020, DOI:10.32604/fdmp.2020.09219

    Abstract The rational design of heating ventilation and air conditioning systems is an important means to achieve energy conservation and sustainable development. The simulation of air-conditioning systems with finite element methods has gradually become an important auxiliary means of complex airspace design. In this paper, a k-ε turbulence model is used to conduct 3D simulations and optimize the summer air conditioning system of a lecture hall. Various conditions are considered in terms of fresh air temperature and flow rate towards the end to improve comfort. The approach used in this paper could also be used in the future as an auxiliary… More >

  • Open Access

    ARTICLE

    Determination of a Safe Distance for Atomic Hydrogen Depositions in Hot-Wire Chemical Vapour Deposition by Means of CFD Heat Transfer Simulations

    Lionel Fabian Fourie1, Lynndle Square2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 225-235, 2020, DOI:10.32604/fdmp.2020.08771

    Abstract A heat transfer study was conducted, in the framework of Computational Fluid Dynamics (CFD), on a Hot-Wire Chemical Vapour Deposition (HWCVD) reactor chamber to determine a safe deposition distance for atomic hydrogen produced by HWCVD. The objective of this study was to show the feasibility of using heat transfer simulations in determining a safe deposition distance for deposition of this kind. All CFD simulations were set-up and solved within the framework of the CFD packages of OpenFOAM namely; snappyHexMesh for mesh generation, buoyantSimpleFoam and rhoSimpleFoam as the solvers and paraView as the post-processing tool. Using a standard set of deposition… More >

  • Open Access

    ARTICLE

    Droplet Breakup Regime in a Cross-Junction Device with Lateral Obstacles

    Tawfiq Chekifi1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 545-555, 2019, DOI:10.32604/fdmp.2019.01793

    Abstract Numerical simulation using Ansys Fluent code is performed, to investigate droplet generation in cross-junction based VOF method. Droplets of water are generated by the shear stress applied by continuous phase (oil), two configurations of cross-junction are suggested; the first is a simple model no modification is performed at the outer channel, while the second model is characterized by a lateral obstacle. we study the effect of velocity ratio, viscous parameter, interfacial tension, flow condition on droplet size and frequency, the effect of lateral obstacles on droplets generation is also focused and analysed. The numerical simulations showed that the velocity ratio… More >

  • Open Access

    ARTICLE

    The Hemodynamic Study on the Effects of Entry Tear and Coverage in Aortic Dissection

    Zhenxia Mu1, Xiaofei Xue1, Minrui Fu1, Dawei Zhao1, Bin Gao1, Yu Chang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.3, pp. 929-945, 2019, DOI:10.32604/cmes.2019.07627

    Abstract In this work, the hemodynamic effects of the type-A aortic dissection in different entry and covering entry tear positions were mainly studied. It provides a new method or idea in the field of the aortic dissection hemodynamics, and it is of profound significance to provide basic theoretical research on the development of aortic dissection in the aspect of clinical judgment. Two type-A aortic dissection models with different entry tear positions (Model 1: The entry tear was located at the entrance of the ascending aorta, Model 2: The entry tear was located at the starting position of the descending aorta) were… More >

  • Open Access

    ABSTRACT

    Patient-Specific Computational Approach for Trans Catheter Aortic Valve Replacement (TAVR): Pre-Procedural Planning for Enhancing Performance and Clinical Outcomes

    Ram P. Ghosh1, Matteo Bianchi1, Gil Marom2, Oren M. Rotman1, Brandon Kovarovic1, Danny Bluestein1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 12-14, 2019, DOI:10.32604/mcb.2019.07379

    Abstract This article has no abstract. More >

Displaying 91-100 on page 10 of 150. Per Page