Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10,025)
  • Open Access

    ARTICLE

    A Numerical Meshfree Technique for the Solution of the MEW Equation

    Sirajul Haq1, Siraj-ul-Islam2, Arshed Ali3

    CMES-Computer Modeling in Engineering & Sciences, Vol.38, No.1, pp. 1-24, 2008, DOI:10.3970/cmes.2008.038.001

    Abstract In this paper we propose a meshfree technique for the numerical solution of the modified equal width wave (MEW) equation. Combination of collocation method using the radial basis functions (RBFs) with first order accurate forward difference approximation is employed for obtaining meshfree solution of the problem. Different types of RBFs are used for this purpose. Performance of the proposed method is successfully tested in terms of various error norms. In the case of non-availability of exact solution, performance of the new method is compared with the results obtained from the existing methods. Propagation of a More >

  • Open Access

    ARTICLE

    Assessment of Mixed Uniform Boundary Conditions for Predicting the Mechanical Behavior of Elastic and Inelastic Discontinuously Reinforced Composites

    D. H. Pahr1, H.J. Böhm1

    CMES-Computer Modeling in Engineering & Sciences, Vol.34, No.2, pp. 117-136, 2008, DOI:10.3970/cmes.2008.034.117

    Abstract The combination of heterogeneous volume elements and numerical analysis schemes such as the Finite Element method provides a powerful and well proven tool for studying the mechanical behavior of composite materials. Periodicity boundary conditions (PBC), homogeneous displacement boundary conditions (KUBC) and homogeneous traction boundary conditions (SUBC) have been widely used in such studies. Recently Pahr and Zysset (2008) proposed a special set of mixed uniform boundary conditions (MUBC) for evaluating the macroscopic elasticity tensor of human trabecular bone. These boundary conditions are not restricted to periodic phase geometries, but were found to give the same… More >

  • Open Access

    ARTICLE

    Modeling of Structural Sandwich Plates with `Through-the-Thickness' Inserts: Five-Layer Theory

    Song-Jeng Huang1,2, Lin-Wei Chiu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.34, No.1, pp. 1-32, 2008, DOI:10.3970/cmes.2008.034.001

    Abstract The composite sandwich plate is one of the most common composite structures. Local stress concentrations can be caused by localized bending effects where a load is introduced. Although a sandwich structure with an insert is one of the classical load bearing structures, little work has been conducted on the adhesive layers or inserts. This study involves a linear elasticity analysis of five-layer sandwich plates with ``through-the-thickness'' inserts, using sandwich plate theory to analyze deformation behavior. Governing equations are formulated as partial differential equations, which are solved numerically using the multi-segment integration method. Sandwich plates with More >

  • Open Access

    ARTICLE

    Innovative Numerical Methods for Nonlinear MEMS: the Non-Incremental FEM vs. the Discrete Geometric Approach

    P. Bettini, E. Brusa, M. Munteanu, R. Specogna, F. Trevisan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.33, No.3, pp. 215-242, 2008, DOI:10.3970/cmes.2008.033.215

    Abstract Electrostatic microactuator is a paradigm of MEMS. Cantilever and double clamped microbeams are often used in microswitches, microresonators and varactors. An efficient numerical prediction of their mechanical behaviour is affected by the nonlinearity of the electromechanical coupling. Sometimes an additional nonlinearity is due to the large displacement or to the axial-flexural coupling exhibited in bending. To overcome the computational limits of the available numerical methods two new formulations are here proposed and compared. Modifying the classical beam element in the Finite Element Method to allow the implementation of a \emph {Non incremental sequential approach} is… More >

  • Open Access

    ARTICLE

    Multi-material Eulerian Formulations and Hydrocode for the Simulation of Explosions

    Ma Tianbao1, Wang Cheng, Ning Jianguo

    CMES-Computer Modeling in Engineering & Sciences, Vol.33, No.2, pp. 155-178, 2008, DOI:10.3970/cmes.2008.033.155

    Abstract A multi-material Eulerian hydrodynamic numerical method and hydrocode that can effectively simulate explosion problems in engineering practice were developed in this study. A modified Youngs' interface reconstruction algorithm was proposed for mixed cells, in which the material's volume fractions of the surrounding cells are not only used to reconstruct the material interface but also adopted to determine the transport order of the material. The algorithm developed herein was validated by the modeling of several tests, such as objects with different shapes moving in translational, rotating and shear flow field in two dimensional Descartes coordinates and More >

  • Open Access

    ARTICLE

    A Post-Processing Scheme to Evaluate Transverse Stresses for Composite Panels under Dynamic Loads

    K. Lee1, H. Park2, S.W. Lee3

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.3, pp. 113-122, 2008, DOI:10.3970/cmes.2008.032.113

    Abstract A post-processing scheme is presented to accurately determine transverse shear and normal stresses in composite panels undergoing geometrically nonlinear deformation under dynamic loading conditions. Transverse stresses are assumed through thickness at a point of interest and are recovered via a one-dimensional finite element method. The finite element method is based on the least square functional of the error in the equilibrium equation along the thickness direction and utilizes the in-plane stresses and resultant transverse shear forces per unit length obtained by a shell element analysis. Numerical results demonstrate that, with minimal addition of computational efforts, More >

  • Open Access

    ARTICLE

    Optimization of Industrial Fluid Catalytic Cracking Unit having Five Lump Kinetic Scheme using Genetic Algorithm

    Shishir Sinha1, Praveen Ch.

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.2, pp. 85-102, 2008, DOI:10.3970/cmes.2008.032.085

    Abstract Fluid catalytic cracking (FCC) unit plays most important role in the economy of a modern refinery that it is use for value addition to the refinery products. Because of the importance of FCC unit in refining, considerable effort has been done on the modeling of this unit for better understanding and improved productivity. The process is characterized by complex interactions among feed quality, catalyst properties, unit hardware parameters and process conditions. \newline The traditional and global approach of cracking kinetics is lumping. In the present paper, five lump kinetic scheme is considered, where gas oil… More >

  • Open Access

    ARTICLE

    Discontinuous Weighted Least-Squares Approximation on Irregular Grids

    N.B.Petrovskaya 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.2, pp. 69-84, 2008, DOI:10.3970/cmes.2008.032.069

    Abstract Discontinuous weighted least--squares (DWLS) approximation is a modification of a standard weighted least-squares approach that nowadays is intensively exploited in computational aerodynamics. A DWLS method is often employed to approximate a solution function over an unstructured computational grid that results in an irregular local support for the approximation. While the properties of a weighted least-squares reconstruction are well known for regular geometries, the approximation over a non-uniform grid is not a well researched area so far. In our paper we demonstrate the difficulties related to the performance of a DWLS method on distorted grids and More >

  • Open Access

    ARTICLE

    Segmentation and Simulation of Objects Represented in Images using Physical Principles

    Patrícia C.T. Gonçalves1,2, João Manuel R.S. Tavares1,2, R.M. Natal Jorge1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.1, pp. 45-56, 2008, DOI:10.3970/cmes.2008.032.045

    Abstract The main goals of the present work are to automatically extract the contour of an object and to simulate its deformation using a physical approach. In this work, to segment an object represented in an image, an initial contour is manually defined for it that will then automatically evolve until it reaches the border of the desired object. In this approach, the contour is modelled by a physical formulation using the finite element method, and its temporal evolution to the desired final contour is driven by internal and external forces. The internal forces are defined… More >

  • Open Access

    ARTICLE

    A New Shooting Method for Solving Boundary Layer Equations in Fluid Mechanics

    Chein-Shan Liu1, Chih-Wen Chang2, Jiang-Ren Chang2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.1, pp. 1-16, 2008, DOI:10.3970/cmes.2008.032.001

    Abstract In this paper, we propose a new method to tackle of two famous boundary layer equations in fluid mechanics, namely, the Falkner-Skan and the Blasius equations. We can employ this method to find unknown initial conditions. The pivotal point is based on the erection of a one-step Lie group element$\mathbf {G}(T)$ and the formation of a generalized mid-point Lie group element$\mathbf {G}(r)$. Then, by imposing$\mathbf {G}(T) = \mathbf {G}(r)$ we can seek the missing initial conditions through a minimum discrepancy from the target in terms of a weighting factor$r \in (0, 1)$. Numerical examples are More >

Displaying 9521-9530 on page 953 of 10025. Per Page