Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12,928)
  • Open Access

    ARTICLE

    Modulation of Acid Hydrolysis Reaction Time for the Extraction of Cellulose Nanocrystals from Posidonia oceanica Leaves

    F. Luzi, E. Fortunati*, D. Puglia, R. Petrucci, J.M. Kenny, L. Torre

    Journal of Renewable Materials, Vol.4, No.3, pp. 190-198, 2016, DOI:10.7569/JRM.2015.634134

    Abstract In this research, the revalorization of Posidonia oceanica leaf sea waste was studied and the acid hydrolysis processing times were modulated in order to optimize the extraction of cellulose nanocrystals (CNCs). The obtained CNCs were deeply investigated. A two-step treatment was applied to extract cellulose nanocrystals from Posidonia oceanica leaves. First, a chemical treatment leads to the removal of lignin and production of holocellulose, while the second chemical process of acid hydrolysis allows the obtainment of cellulose nanocrystals in aqueous suspension. The unbleached and bleached leaves and cellulose nanocrystals were characterized by using thermogravimetric analysis, infrared spectroscopy and morphological investigation;… More >

  • Open Access

    ARTICLE

    Synthesis and Thermal Characterization of Polyurethanes Obtained from Cottonseed and Corn Oil-Based Polyols

    Karina Cruz-Aldaco1, Erika Flores-Loyola2, Cristóbal Noé Aguilar-González1, Nuria Burgos3, Alfonso Jiménez3*

    Journal of Renewable Materials, Vol.4, No.3, pp. 178-184, 2016, DOI:10.7569/JRM.2016.634107

    Abstract The use of vegetable oils to replace fossil feedstock has become an area of opportunity and a priority for study in the field of polymer science. Vegetable oils are considered as renewable resources with high potential, low cost and full availability. The aim of this study is the synthesis of biobased polyols from cottonseed oil (Gossypium barbadanse) and corn oil (Zea mays) as feedstock. Their synthesis was successfully performed, as can be concluded from the determination of their hydroxyl index as well as the structural and thermal characterization carried out in this work. Polyurethanes from biobased polyols were synthesized with… More >

  • Open Access

    ARTICLE

    Valorization of Agricultural Wastes for the Production of Protein-Based Biopolymers

    Nuria Burgos, Arantzazu Valdés, Alfonso Jiménez*

    Journal of Renewable Materials, Vol.4, No.3, pp. 165-177, 2016, DOI:10.7569/JRM.2016.634108

    Abstract In this study we provide an overview of the latest developments on the extraction, production, modification and applications of fruit residues and by-products in the formation of protein-based biopolymers, in particular for the formulation of edible films. Our aim was mainly to demonstrate the highly transdisciplinary character of these topics by giving an overview of the main developments and research topics in the chemistry and engineering aspects of protein-based biopolymers. These innovative raw materials have been evaluated for the production of biomaterials to be used in some key sectors, such as food packaging. More >

  • Open Access

    ARTICLE

    Mineralization of Poly(lactic acid) (PLA), Poly(3-hydroxybutyrate-co-valerate) (PHBV) and PLA/PHBV Blend in Compost and Soil Environments

    Sudhakar Muniyasamy1,2, Osei Ofosu1,2, Maya Jacob John1,2, Rajesh D. Anandjiwala1,2*

    Journal of Renewable Materials, Vol.4, No.2, pp. 133-145, 2016, DOI:10.7569/JRM.2016.634104

    Abstract The present study investigates the mineralization of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-covalerate) (PHBV), and PLA/PHBV blend in compost and soil burial environments. The mineralization was assayed on the basis of carbon dioxide (CO2) release from the test materials incubated in compost and soil for a period of 200 days. The degradation was followed by means of fragmentation, thermogravimetric (TGA), FTIR spectroscopy and scanning electron microscopy (SEM) analyses. The results showed that PLA, PHBV and blend of PLA/PHBV achieved almost 90% biodegradation under composting conditions, while PHBV, PLA/PHBV blend and PLA respectively achieved only 35%, 32% and 4% biodegradation under soil… More >

  • Open Access

    ARTICLE

    Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/ Purifi ed Cellulose Fiber Composites by Melt Blending: Characterization and Degradation in Composting Conditions

    Estefanía Lidón Sánchez-Safont1, Jennifer González-Ausejo1, José Gámez-Pérez1, José María Lagarón2, Luis Cabedo1*

    Journal of Renewable Materials, Vol.4, No.2, pp. 123-132, 2016, DOI:10.7569/JRM.2015.634127

    Abstract Novel biodegradable composites based on poly(3-hydroxybutirate-co-3-hydroxyvalerate) (PHBV) and different contents of purifi ed alpha-cellulose fi bers (3, 10, 25 and 45%) were prepared by melt blending and characterized. The composites were characterized by scanning electron microscopy (SEM), wide-angle X-ray scattering (WAXS) experiments, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanic analysis (DMA) and Shore D hardness measurements. Disintegrability under composting conditions was studied according to the ISO 20200 standard. Morphological results showed that high dispersion of the fi bers was achieved during mixing. Good adhesion on the fi ber-matrix interface was also detected by SEM. The addition of low… More >

  • Open Access

    ARTICLE

    Effect of Epoxidized Jatropha Oil on the Cure, Thermal, Morphological and Viscoelastic Properties of Epoxy Resins

    A. Sammaiah1, K. V. Padmaja1, K. I. Suresh*,2, R. B. N. Prasad1

    Journal of Renewable Materials, Vol.4, No.2, pp. 113-122, 2016, DOI:10.7569/JRM.2015.634118

    Abstract This article reports the effect of epoxidized jatropha oil (EJO) on the thermal, cure and viscoelastic properties of epoxy resins. Epoxidized jatropha oil with an oxirane value of 5.0 was prepared and epoxy formulations containing different concentrations of EJO were evaluated for cure, morphology, thermal and viscoelastic properties. The curing temperature of the formulations increased with increasing EJO content. The glass transition temperature of the cured films decreased from 56 °C for unmodified epoxy resin to 23 °C for the sample with 60 wt% EJO reactive diluent, suggesting good plasticizing action. The thermal decomposition was only marginally affected. More >

  • Open Access

    ARTICLE

    Natural Fiber-Polypropylene Composites Made from Caranday Palm

    Estela Krause Sammartino1,2,3†, María Marta Reboredo4, Mirta I. Aranguren*,4

    Journal of Renewable Materials, Vol.4, No.2, pp. 101-112, 2016, DOI:10.7569/JRM.2014.634144

    Abstract Composites made from polypropylene (PP) and local South American fibers traditionally used in yarnderived craftsmanships, Caranday Palm, were studied regarding the effect of fiber addition, concentration and characteristics of the coupling agent (molecular weight and percentage of grafted maleic anhydride), as well as type of processing. A laboratory-scale intensive mixing followed by compression, and pilot plant twin extrusion followed by injection, were the two processes investigated. The use of the first one allowed the selection of processable formulations with high fiber concentration and a percentage of coupling agent below the surface fiber saturation. In fact, it was found that there… More >

  • Open Access

    ARTICLE

    Influence of Isocyanate Index on Selected Properties of Flexible Polyurethane Foams Modified with Various Bio-Components

    Aleksander Prociak*, Elźbieta Malewska, Szymon Bąk

    Journal of Renewable Materials, Vol.4, No.1, pp. 78-85, 2016, DOI:10.7569/JRM.2015.634129

    Abstract In this article, the results of the foaming process analysis of fl exible polyurethane with different isocyanate indexes are presented. Two types of flexible polyurethane foams (FPURF) were obtained: (1) by using petrochemical components and a rapeseed-oil-based polyol (used in the amount of 20 wt%), (2) by using petrochemical components and cellulose as a natural fi ller in the amount of 3 php (per hundred parts of polyol). The characteristic parameters of the foaming process, such as the foam’s growth velocity, the core temperature and dielectric polarization, were measured using a Foamat device. Moreover, the following properties of flexible polyurethane… More >

  • Open Access

    ARTICLE

    Synthesis, Structure and Properties of Poly(ester-Urethane- Urea)s Synthesized Using Biobased Diamine

    Marcin Włoch, Janusz Datta*

    Journal of Renewable Materials, Vol.4, No.1, pp. 72-77, 2016, DOI:10.7569/JRM.2015.634130

    Abstract Modern polymer science and technology is focused on the development of partial or fully green polymers. This focus is related to green chemistry trends, which propose using natural and renewable resources as monomers in the synthesis of polymers. In this study, biobased diamine was used as a chain extender of ester-urethane prepolymer. Obtained poly(ester-urethane-urea) contains 16 wt% of biobased diamine. There is mention of an amine curing agent that is an amine derivative of dimerized fatty acids (obtained from vegetable oils). Application of two chain extenders, i.e., 1,4-butanediol and biobased diamine (applied separately or in mixture), with different molecular weights… More >

  • Open Access

    ARTICLE

    Improved Permeability Properties for Bacterial Cellulose/ Montmorillonite Hybrid Bionanocomposite Membranes by In-Situ Assembling

    Itxaso Algar1, Clara Garcia-Astrain1, Alba Gonzalez2, Loli Martin3, Nagore Gabilondo1, Aloña Retegi1*, Arantxa Eceiza1*

    Journal of Renewable Materials, Vol.4, No.1, pp. 57-65, 2016, DOI:10.7569/JRM.2015.634124

    Abstract Bacterial cellulose/montmorillonite (BCMMT) hybrid bionanocomposite membranes were prepared by in-situ assembling or one-step biosynthesis process. The presence of MMT in BC membranes was confi rmed by thermogravimetric analysis and quantifi ed by mass spectrometry, resulting in bionanocomposites with MMT contents between 7–13 wt%. The incorporation of MMT during BC biosynthesis modifi ed BC morphology and led to lower porosity, even though higher water holding capacity was achieved. Bionanocomposites showed improved thermal stability and water vapor and oxygen gas barrier properties up to 70 and 80% with respect to neat BC membranes. This improvement was related to the tortuous path of… More >

Displaying 10821-10830 on page 1083 of 12928. Per Page