Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12,936)
  • Open Access

    ARTICLE

    Finite Deflection of Slender Cantilever with Predefined Load Application Locus using an Incremental Formulation

    D. Pandit1, N. Thomas2, Bhakti Patel1, S.M. Srinivasan1

    CMC-Computers, Materials & Continua, Vol.45, No.2, pp. 127-144, 2015, DOI:10.3970/cmc.2015.045.127

    Abstract In this paper, a class of problems involving space constrained loading on thin beams with large deflections is considered. The loading is such that, the locus of the force application point moves along an arbitrarily predefined path, fixed in space. Both linear elastic as well as elastic-perfectly plastic materials are considered. A simplification is realized using the moment-curvature relationship directly. The governing equation obtained is highly non-linear owing to inclusion of both material and geometric non-linearity. A general algorithm is described to solve the governing equation using an incremental formulation coupled with Runge Kutta 4th order initial value explicit solver.… More >

  • Open Access

    ARTICLE

    Structural Continuous Dependence in Micropolar Porous Bodies

    M. Marin1,2, A.M. Abd-Alla3,4, D. Raducanu1, S.M. Abo-Dahab3,5

    CMC-Computers, Materials & Continua, Vol.45, No.2, pp. 107-126, 2015, DOI:10.3970/cmc.2015.045.107

    Abstract Our study is dedicated to mixed initial boundary value problem for porous micropolar bodies. We prove that the solution of this problem depends continuously on coefficients which couple the micropolar deformation equations with the equations that model the evolution of voids. The evaluation of this dependence is made by using an appropriate measure. More >

  • Open Access

    ARTICLE

    Dynamics of the Moving Load Acting on the Hydro-elastic System Consisting of the Elastic Plate, Compressible Viscous Fluid and RigidWall

    S.D. Akbarov1,2, M.I. Ismailov3

    CMC-Computers, Materials & Continua, Vol.45, No.2, pp. 75-106, 2015, DOI:10.3970/cmc.2015.045.075

    Abstract The subject of the paper is the study of the dynamics of the moving load acting on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid and rigid wall. Under this study the motion of the plate is described by linear elastodynamics, and the motion of the compressible viscous fluid is described by the linearized Navier-Stokes equations. Numerical results are obtained for the case where the material of the plate is steel, but the fluid material is Glycerin. According to these results, corresponding conclusions related to the influence of the problem parameters, such as fluid viscosity, plate thickness,… More >

  • Open Access

    ARTICLE

    Impact Response of Stiffened Cylindrical Shells With/without Holes Based on Equivalent Model of Isogrid Structures

    Qingsheng Yang1,2, Shaochong Yang1,3, Xiaohu Lin4

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 57-74, 2015, DOI:10.3970/cmc.2015.045.057

    Abstract An equivalent continuum model of an isogrid structure is utilized to analyze the impact response of isogrid structures and stiffened structures. The parameters of the equivalent model are determined, and the comparison between the equivalent continuous structure and the real grid structure are examined to validate the reliability of the equivalent model. Then, the impact responses of stiffened cylindrical shells with and without an elliptical hole are investigated by using the equivalent model of grid structures. For a different location and geometry of the elliptical hole, the deformation and load-bearing capacity of the grid-stiffened cylindrical shells are studied. The numerical… More >

  • Open Access

    ARTICLE

    Development and Characterization of the Midrib of Coconut Palm Leaf Reinforced Polyester Composite

    Neeraj Dubey1, Geeta Agnihotri1

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 39-56, 2015, DOI:10.3970/cmc.2015.045.039

    Abstract In this paper, midrib of coconut palm leaves (MCL) was investigated for the purpose of development of natural fiber reinforced polymer matrix composites. A new natural fiber composite as MCL/polyester is developed by the hand lay-up method, and the material and mechanical properties of the fiber, matrix and composite materials were evaluated. The effect of fiber content on the tensile, flexural, impact, compressive strength and heat distortion temperature (HDT) was investigated. It was found that the MCL fiber had the maximum tensile strength, tensile modulus flexural strength, flexural modulus and Izod impact strength of 177.5MPa, 14.85GPa, 316.04MPa and 23.54GPa, 8.23KJ/m2More >

  • Open Access

    ARTICLE

    Numerical Studies on Stratified Rock Failure Based on Digital Image Processing Technique at Mesoscale

    Ang Li1, Guo-jian Shao1,2, Pei-rong Du3, Sheng-yong Ding1, Jing-bo Su4

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 17-38, 2015, DOI:10.3970/cmc.2015.045.017

    Abstract This paper investigates the failure behaviors of stratified rocks under uniaxial compression using a digital image processing (DIP) based finite difference method (FDM). The two-dimensional (2D) mesostructure of stratified rocks, represented as the internal spatial distribution of two main rock materials (marble and greenschist), is first identified with the DIP technique. And then the binaryzation image information is used to generate the finite difference grid. Finally, the failure behaviors of stratified rock samples are simulated by FDM considering the inhomogeneity of rock materials. In the DIP, an image segmentation algorithm based on seeded region growing (SRG) is proposed, instead of… More >

  • Open Access

    ARTICLE

    Bending, Free Vibration and Buckling Analysis of Functionally Graded Plates via Wavelet Finite Element Method

    Hao Zuo1,2, Zhibo Yang1,2,3, Xuefeng Chen1,2, Yong Xie4, Xingwu Zhang1,2

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 167-204, 2014, DOI:10.3970/cmc.2014.044.167

    Abstract Following previous work, a wavelet finite element method is developed for bending, free vibration and buckling analysis of functionally graded (FG) plates based on Mindlin plate theory. The functionally graded material (FGM) properties are assumed to vary smoothly and continuously throughout the thickness of plate according to power law distribution of volume fraction of constituents. This article adopts scaling functions of two-dimensional tensor product BSWI to form shape functions. Then two-dimensional FGM BSWI element is constructed based on Mindlin plate theory by means of two-dimensional tensor product BSWI. The proposed two-dimensional FGM BSWI element possesses the advantages of high convergence,… More >

  • Open Access

    ARTICLE

    Computing the Electric and Magnetic Green’s Functions in General Electrically Gyrotropic Media

    V. G. Yakhno1, B. Çiçek2

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 141-166, 2014, DOI:10.3970/cmc.2014.044.141

    Abstract A method for an approximate computation of the electric and magnetic Green’s functions for the time-harmonic Maxwell’s equations in the general electrically gyrotropic materials is proposed. This method is based on the Fourier transform meta-approach: the equations for electric and magnetic fields are written in terms of images of the Fourier transform with respect to space variables and as a result of it the linear algebraic systems for finding Fourier images of the columns of the Green’s functions are obtained. The explicit formulas for the solutions of the obtained systems have been found. Finally, elements of the Green’s functions are… More >

  • Open Access

    ARTICLE

    Sensitivity of Dynamic Response of a Simply Supported Functionally Graded Magneto-electro-elastic Plate to its Elastic Parameters

    G. Q. Xie1,2, M. X. Chi1

    CMC-Computers, Materials & Continua, Vol.44, No.2, pp. 123-140, 2014, DOI:10.3970/cmc.2014.044.123

    Abstract Dynamic response sensitivity of a simply supported functionally graded magneto-electro-elastic plates have been studied by combining analytical method with finite element method. The functionally graded material parameters are assumed to obey exponential law in the thickness direction. A series solution of double trigonometric function agreed with the simply supported boundary condition is adopted in the plane of the plate and finite element method is used across the thickness of the plate. The finite element model is established based on energy variational principle. The coupled electromagnetic dynamic characteristics of a simply supported functionally graded magneto- electro-elastic plate are decided by its… More >

  • Open Access

    ARTICLE

    Thermo-elastic Stresses in a Functional Graded Material Under Thermal Loading, Pure Bending and Thermo-mechanical Coupling

    Wei Zhang1,2, Pengcheng Ni2, Bingfei Liu1,3

    CMC-Computers, Materials & Continua, Vol.44, No.2, pp. 105-122, 2014, DOI:10.3970/cmc.2014.044.105

    Abstract Analytical expressions have been derived for the through thickness stresses of a Functional graded materials (FGMs) thin plate subjected to thermal loading, pure bending and thermo-mechanical coupling, respectively. The structure is comprised of a metallic layer, a ceramic layer and a functional graded layer. Continuous gradation of the volume fraction in the FGM layer is modeled in the form of an "m" power polynomial of the coordinate axis in thickness direction of the plate. Numerical scheme of discretizing the continuous FGM layer with different graded distributions such as linear (m=1), quadratic (m=2) and square root (m=0.5) has been developed by… More >

Displaying 12711-12720 on page 1272 of 12936. Per Page