Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,595)
  • Open Access

    ARTICLE

    Toughening Mechanisms in Carbon Nanotube-Reinforced Amorphous Carbon Matrix Composites

    J.B. Niu1, L.L. Li2, Q. Xu1, Z.H. Xia1,3

    CMC-Computers, Materials & Continua, Vol.38, No.1, pp. 31-41, 2013, DOI:10.3970/cmc.2013.038.031

    Abstract Crack deflection and penetration at the interface of multi-wall carbon nanotube/amorphous carbon composites were studied via molecular dynamics simulations. In-situ strength of double-wall nanotubes bridging a matrix crack was calculated under various interfacial conditions. The structure of the nanotube reinforcement -ideal multi-wall vs. multi-wall with interwall sp3 bonding - influences the interfacial sliding and crack penetration. When the nanotube/matrix interface is strong, matrix crack penetrates the outermost layer of nanotubes but it deflects within the nanotubes with certain sp3 interwall bond density, resulting in inner wall pullout. With increasing the sp3 interwall bond density, the fracture mode becomes brittle; the… More >

  • Open Access

    ARTICLE

    A Note on Statistical Strength of Carbon Nanotubes

    X. Frank Xu1,2, Yuxin Jie3, Irene J. Beyerlein4

    CMC-Computers, Materials & Continua, Vol.38, No.1, pp. 17-30, 2013, DOI:10.3970/cmc.2013.038.017

    Abstract This note aims to relate the measured strength statistics of individual carbon nanotubes (CNTs) to the physics of brittle fracture and the weakest link model. By approximating an arbitrary flaw size distribution with a segmented power law, an effort is made to extend applicability of the Weibull distribution to arbitrary flaw populations, which explains why the Weibull distribution fits the experimental data of CNTs and many other brittle materials, and why in other cases it is not so clear. A generalized Weibull distribution is proposed to account for all non-asymptotic cases. The published CNT testing data are analyzed, and finally… More >

  • Open Access

    ARTICLE

    Bandgap Opening in Metallic Carbon Nanotubes Due to Silicon Adatoms

    Branden B. Kappes1, Cristian V. Ciobanu2

    CMC-Computers, Materials & Continua, Vol.38, No.1, pp. 1-16, 2013, DOI:10.3970/cmc.2013.038.001

    Abstract Controlling the bandgap of carbon nanostructures is a key factor in the development of mainstream applications of carbon-based nanoelectronic devices. This is particularly important in the cases where it is desired that the carbon nanostructures are the active elements, as opposed to being the conductive leads between other elements of the device. Here, we report density functional theory calculations of the effect of silicon impurities on the electronic properties of carbon nanotubes (CNTs). We have found that Si adatoms can open up a bandgap in intrinsically metallic CNTs, even when the linear density of Si atoms is low enough that… More >

  • Open Access

    ARTICLE

    Design of Aligned Carbon Nanotubes Structures Using Structural Mechanics Modeling
    Part 2: Aligned Carbon Nanotubes Structure Modeling

    J. Joseph1, Y. C. Lu1

    CMC-Computers, Materials & Continua, Vol.37, No.1, pp. 59-75, 2013, DOI:10.3970/cmc.2013.037.059

    Abstract The aligned carbon nanotube (A-CNT) structure is composed of arrays of individual CNTs grown vertically on a flat substrate. The overall structure and properties of an A-CNTs are highly dependent upon the designs of various architectures and geometric parameters. In Part 2, we have presented the detailed designs and modeling of various aligned carbon nanotube structures. It is found the A-CNT structures generally have much lower modulus than an individual CNT. The reason is due to the high porosity and low density of the A-CNT structures, since the interstitial space between nanotubes is mostly occupied by air. Increasing the nanotube… More >

  • Open Access

    ARTICLE

    Design of Aligned Carbon Nanotubes Structures Using Structural Mechanics Modeling
    Part 1: Theory and Individual Carbon Nanotube Modeling

    J. Joseph1, Y. C. Lu1

    CMC-Computers, Materials & Continua, Vol.37, No.1, pp. 39-57, 2013, DOI:10.3970/cmc.2013.037.039

    Abstract Aligned carbon nanotubes structures are emerging new materials that have demonstrated superior mechanical, thermal, and electrical properties and have the huge potential for a wide range of applications. In contrast with traditional materials whose microstructures are relatively "fixed", the aligned carbon nanotube materials have highly "tunable" structures. Therefore, it is crucial to have a rational strategy to design and evaluate the architectures and geometric factors to help process the optimal nanotube materials. Astructural mechanics based computational modeling is used for designing the aligned carbon nanotubes structures. Part 1 of the papers presents the theory of the computational method as well… More >

  • Open Access

    ARTICLE

    Stochastic Macro Material Properties, Through Direct Stochastic Modeling of Heterogeneous Microstructures with Randomness of Constituent Properties and Topologies, by Using Trefftz Computational Grains (TCG)

    Leiting Dong1,2, Salah H. Gamal3, Satya N. Atluri2,4

    CMC-Computers, Materials & Continua, Vol.37, No.1, pp. 1-21, 2013, DOI:10.3970/cmc.2013.037.001

    Abstract In this paper, a simple and reliable procedure of stochastic computation is combined with the highly accurate and efficient Trefftz Computational Grains (TCG), for a direct numerical simulation (DNS) of heterogeneous materials with microscopic randomness. Material properties of each material phase, and geometrical properties such as particles sizes and distribution, are considered to be stochastic with either a uniform or normal probabilistic distributions. The objective here is to determine how this microscopic randomness propagates to the macroscopic scale, and affects the stochastic characteristics of macroscopic material properties. Four steps are included in this procedure: (1) using the Latin hypercube sampling,… More >

  • Open Access

    ARTICLE

    Estimation of the Mechanical Property of CNT Ropes Using Atomistic-Continuum Mechanics and the Equivalent Methods

    C.J. Huang1, T.Y. Hung1, K.N. Chiang2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 99-133, 2013, DOI:10.3970/cmc.2013.036.099

    Abstract The development in the field of nanotechnology has prompted numerous researchers to develop various simulation methods for determining the material properties of nanoscale structures. However, these methods are restricted by the speed limitation of the central processing unit (CPU), which cannot estimate larger-scale nanoscale models within an acceptable time. Thus, decreasing the CPU processing time and retaining the estimation accuracy of physical properties of nanoscale structures have become critical issues. Accordingly, this study aims to decrease the CPU processing time and complexity of large nanoscale models by utilizing, atomistic-continuum mechanics (ACM) to build an equivalent model of carbon nanotubes (CNTs).… More >

  • Open Access

    ARTICLE

    Prediction of Delamination Onset and Critical Force in Carbon/Epoxy Panels Impacted by Ice Spheres

    Jennifer D. Rhymer1, Hyonny Kim1

    CMC-Computers, Materials & Continua, Vol.35, No.2, pp. 87-117, 2013, DOI:10.3970/cmc.2013.035.087

    Abstract Polymer matrix composite structures are exposed to a variety of impact threats including hail ice. Internal delamination damage created by these impacts can exist in a form that is visually undetectable. This paper establishes an analysis methodology for predicting the onset of delamination damage in toughened carbon/epoxy composite laminates when impacted by high velocity ice spheres (hailstones). Experiments and analytical work focused on ice sphere impact onto composite panels have determined the failure threshold energy as a function of varying ice diameter and panel thickness, and have established the ability to predict the onset of delamination using cohesive elements in… More >

  • Open Access

    ARTICLE

    Influence of Scale Specific Features on the Progressive Damage of Woven Ceramic Matrix Composites (CMCs)

    K. C. Liu1, S. M. Arnold2

    CMC-Computers, Materials & Continua, Vol.35, No.1, pp. 35-65, 2013, DOI:10.3970/cmc.2013.035.035

    Abstract It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the influence of many of these scale specific architectural features of woven ceramic composite are examined stochastically at both the macroscale (woven repeating unit cell (RUC)) and structural scale (idealized using multiple RUCs).… More >

  • Open Access

    ARTICLE

    Non-Deterministic Structural Response and Reliability Analysis Using a Hybrid Perturbation-Based Stochastic Finite Element and Quasi-Monte Carlo Method

    C. Wang1, W. Gao1, C.W. Yang1, C.M. Song1

    CMC-Computers, Materials & Continua, Vol.25, No.1, pp. 19-46, 2011, DOI:10.3970/cmc.2011.025.019

    Abstract The random interval response and probabilistic interval reliability of structures with a mixture of random and interval properties are studied in this paper. Structural stiffness matrix is a random interval matrix if some structural parameters and loads are modeled as random variables and the others are considered as interval variables. The perturbation-based stochastic finite element method and random interval moment method are employed to develop the expressions for the mean value and standard deviation of random interval structural displacement and stress responses. The lower bound and upper bound of the mean value and standard deviation of random interval structural responses… More >

Displaying 1571-1580 on page 158 of 1595. Per Page