Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (310)
  • Open Access

    ARTICLE

    Mitigating Carbon Emissions: A Comprehensive Analysis of Transitioning to Hydrogen-Powered Plants in Japan’s Energy Landscape Post-Fukushima

    Nugroho Agung Pambudi1,2,4,*, Andrew Chapman, Alfan Sarifudin1,3, Desita Kamila Ulfa4, Iksan Riva Nanda5

    Energy Engineering, Vol.121, No.5, pp. 1143-1159, 2024, DOI:10.32604/ee.2024.047555

    Abstract One of the impacts of the Fukushima disaster was the shutdown of all nuclear power plants in Japan, reaching zero production in 2015. In response, the country started importing more fossil energy including coal, oil, and natural gas to fill the energy gap. However, this led to a significant increase in carbon emissions, hindering the efforts to reduce its carbon footprint. In the current situation, Japan is actively working to balance its energy requirements with environmental considerations, including the utilization of hydrogen fuel. Therefore, this paper aims to explore the feasibility and implications of using hydrogen power plants as a… More >

  • Open Access

    ARTICLE

    Rolling Decision Model of Thermal Power Retrofit and Generation Expansion Planning Considering Carbon Emissions and Power Balance Risk

    Dong Pan1, Xu Gui1, Jiayin Xu1, Yuming Shen1, Haoran Xu2, Yinghao Ma2,*

    Energy Engineering, Vol.121, No.5, pp. 1309-1328, 2024, DOI:10.32604/ee.2024.046464

    Abstract With the increasing urgency of the carbon emission reduction task, the generation expansion planning process needs to add carbon emission risk constraints, in addition to considering the level of power adequacy. However, methods for quantifying and assessing carbon emissions and operational risks are lacking. It results in excessive carbon emissions and frequent load-shedding on some days, although meeting annual carbon emission reduction targets. First, in response to the above problems, carbon emission and power balance risk assessment indicators and assessment methods, were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios, considering power supply regulation… More >

  • Open Access

    ARTICLE

    Influence of Poly (vinyl butyral) Modification on the Mechanical and Thermal Properties of Kevlar Fiber Reinforced Novolac epoxy/multiwalled carbon nanotube nanocomposites

    KAVITA*, R.K. TIWARI

    Journal of Polymer Materials, Vol.36, No.2, pp. 195-205, 2019, DOI:10.32381/JPM.2019.36.02.7

    Abstract The effect of poly (vinyl butyral) and acid functionalized multiwalled carbon nanotubes (f-MWCNT) on the thermal and mechanical performance of Kevlar fiber reinforced novolac epoxy nanocomposites was investigated and presented in this paper. Nanocomposite containing 1.5 wt. % poly (vinyl butyral) and 0.5 wt. % f-MWCNT exhibited best thermal and mechanical properties (except flexural strength) among all the nanocomposites reported here. It showed ~5%, 27% and 126 % improvement in tensile strength, young’s modulus and impact strength respectively as compared to the neat novolac epoxy Kevlar composite.Nanocomposite containing 0.5 wt. % f- MWCNT and 2 wt. % poly (vinyl butyral)… More >

  • Open Access

    ARTICLE

    Improved Corrosion Resistance of Carbon Reinforced Aluminium Laminates in Atmospheric Environment: Role of Environment Friendly Jute Fibre/ Alumina nano Coating

    M. VASUMATHI1,a,*, VELA MURALI2,b, S. RASHIA BEGUM1,c, N. RAJENDRAN2,d

    Journal of Polymer Materials, Vol.36, No.1, pp. 1-11, 2019, DOI:10.32381/JPM.2019.36.01.1

    Abstract In the Fibre Metal Laminate (FML), Carbon Reinforced Aluminium laminate (CARALL), aluminium is placed next to carbon fibres. The potential difference between the aluminium and carbon is larger, leads to galvanic corrosion, which tries to bring down the durability of the FML. To bring down the effect of corrosion, a material layer is introduced between fibres and aluminium so as to separate them thus lowering the possibility of occurrence of corrosion. Another approach is to coat the surfaces of aluminium with different proportions of aluminium oxide nano particles prior to fabrication of the FML. For both the cases, corrosion rates… More >

  • Open Access

    ARTICLE

    Performance Enhancement of Bio-fouling Resistant Cellulose triacetate-based Osmosis Membranes using Functionalized Multiwalled Carbon Nanotube & Graphene Oxide

    A.K. GHOSH1, RUTUJA S. BHOJE2, R.C. BINDAL1

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 109-120, 2020, DOI:10.32381/JPM.2020.37.1-2.8

    Abstract In this study, cellulose triacetate (CTA) based nanocomposite membranes were developed by incorporation of carboxylic acid functionalized multiwalled carbon-nanotube (cMWCNT) and graphene oxide (GO) which have enhancement of both flux and fouling resistance properties of the membranes. Membranes were casted at room temperature and annealed at 90o C hot water for 10 minutes. The incorporation level of both the nanomaterials is 1.5% of the CTA polymer weight in the nanocomposite membranes. Prepared membranes were characterized in terms of water contact angle, surface morphology and mechanical strength. The performance of the membranes was evaluated both in reverse osmosis (RO) and forward… More >

  • Open Access

    ARTICLE

    Experimental Novel Investigation of Electrostatic Charged Multi Walled Carbon Nanotubes Reinforced Epoxy Based Polymer Composite

    R. SARAVANAN*, A. SURESHBABU

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 43-54, 2020, DOI:10.32381/JPM.2020.37.1-2.4

    Abstract In this research work, multi walled carbon nanotubes (MWCNT) particulate filler of various (0.9, 1.2, 1.5, & 1.8 wt %) weight percentage was used along with epoxy resin. A novel method of distributing the MWCNT in epoxy had been employed to reduce the agglomeration problem by charging the MWCNT electrostatically. The electrostatic charged (MWCNT) and uncharged (MWCNT) were loaded on to matrix and then it was stirred by a mechanical mixer for 300 minutes continuously to achieve uniform distribution. The nano filler reinforced composite was fabricated by using hand layup method and mechanical testing (Tensile and Flexural) were performed as… More >

  • Open Access

    ARTICLE

    Flammabilty and Mechanical Performance of MWCNT Incorporated Cyante Ester/Carbon Fiber Composites

    JITENDRA. S. TATE1,2,*, HARISH KALLAGUNTA1,2, ANDREW ALVAREZ1

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 101-120, 2021, DOI:10.32381/JPM.2021.38.1-2.9

    Abstract The exponential growth in composites and their increased use in military, aerospace, energy, and automotive industry is driven by their high performance and light weight. High performance thermosetting polymers such as cyanate ester have received considerable attention due to its ability of volatile-free curing. It also offers advantages such as excellent radiation shielding, high thermal stability, and hydrophobicity with lots of potential for enhanced mechanical strength. This research article discusses the results of effects of multiwalled carbon nanotubes (MWCNT) at predetermined loading levels of 0.5wt%, 1wt% and 1.5wt% on mechanical, thermal and flammability properties of cyanate ester modified carbon fiber… More >

  • Open Access

    ARTICLE

    Study of the Effect of UV-exposure on HDPE/Carbon Black Composite Floating Structure

    ALOK K. SAHUa, RAJSHREE VIJAYVARGIYAa, R. M. SARVIYAb

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 183-193, 2022, DOI:10.32381/JPM.2022.39.3-4.1

    Abstract HDPE material is found to be best suited material for the manufacturing of floating bed structure for the solar photovoltaic (PV) system due to its light weight and excellent mechanical & chemical resistant properties. However, the major restriction in this regard is the limited engineering design and also the effect of UV radiations present in the natural environment that leads to the degradation of the plastic materials. Hence, in order to improve its UV stability carbon black is incorporated into it as UV resistant additive and hollow cubical floats of such HDPE/carbon black composite material has been manufactured by rotational… More >

  • Open Access

    REVIEW

    A Brief Review of Surface Modification of Carbonyl Iron Powders (CIPs) for Magnetorheological Fluid Applications

    THIRUMALAISAMY SURYAPRABHAA, CHUNGHYUN CHOIA, ZUBAIR AHMED CHANDIOB, LAWRENCE ROBERT MSALILWAB, TAEGWANG YUNC,*, JUN YOUNG CHEONGB,*, BYUNGIL HWANGA,*

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 191-204, 2023, DOI:10.32381/JPM.2023.40.3-4.5

    Abstract Magnetorheological fluids (MRFs) is a smart fluid system that exhibits swift and reversible alterations in their rheological characteristics when exposed to an external magnetic field. MRFs are used for applications in various areas, including automotive systems, robotics, aerospace, and civil engineering. The performance of MRFs depends on the behavior of the dispersed magnetic particles, necessitating thoughtful consideration of particle traits to optimize fluid performance. Carbonyl Iron Powders (CIPs), high purity iron (>98%) reduced from penta carbonyl iron, are widely employed in MRFs due to their exceptional magnetic characteristics. Nevertheless, the innate surfaces of CIPs tend to conglomerate, leading to compromises… More >

  • Open Access

    ARTICLE

    Correlation and Pathway Analysis of the Carbon, Nitrogen, and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea (Camellia sinensis)

    Chun Mao1, Ji He1,*, Xuefeng Wen1, Yangzhou Xiang2, Jihong Feng1, Yingge Shu1

    Phyton-International Journal of Experimental Botany, Vol.93, No.3, pp. 487-502, 2024, DOI:10.32604/phyton.2024.048246

    Abstract The contents of carbon (C), nitrogen (N), and phosphorus (P) in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea, such as tea polyphenols, amino acids, and caffeine. However, few studies have quantified the effects of these factors on the main quality components of tea. The study aimed to explore the interactions of C, N, and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method. The results indicated that (1) The contents of C, N, and P in soil, microorganisms, and tea plants… More >

Displaying 1-10 on page 1 of 310. Per Page