Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    YB-1 downregulation attenuates UQCRC1 protein expression level in H9C2 cells and decreases the mitochondrial membrane potential

    HUIFANG CHEN1,2, XIAOYING ZHOU2, ZONGHONG LONG2, XIANGLONG TANG2, HONG LI2,*

    BIOCELL, Vol.44, No.3, pp. 371-379, 2020, DOI:10.32604/biocell.2020.08893

    Abstract UQCRC1 is one of the 10 mitochondrial complex III subunits, this protein has a role in energy metabolism, myocardial protection, and neurological diseases. The upstream mechanism of the UQCRC1 protective effect on cardiomyocytes is currently unavailable. In order to explore the upstream molecules of UQCRC1 and elucidate the protective mechanism of UQCRC1 on cardiomyocytes in more detail, we focused on the nuclease-sensitive elementbinding protein 1 (YB-1). We hypothesized YB-1 acts as an upstream regulatory molecule of UQCRC1. This study found that YB-1 RNAi significantly reduces the expression of the UQCRC1 protein level (p < 0.05) and obviously decreases the mitochondrial… More >

  • Open Access

    ABSTRACT

    Systems Modeling of Cardiomyocyte Mechanobiology

    Philip M. Tan1, Kyle S. Buchholz2, Shulin Cao2, Yasser Aboelkassem2, Jeffrey H. Omens2, Andrew D. McCulloch2,*, Jeffrey J. Saucerman1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 1-3, 2019, DOI:10.32604/mcb.2019.05693

    Abstract In this article, we summarize our systems model of cardiomyocyte mechano-signaling published in PLoS Computational Biology and discuss new approaches to extending these models to predict cardiac myocyte gene expression in response to stretch. More >

  • Open Access

    ARTICLE

    Effect of Matrix on Cardiomyocyte Viscoelastic Properties in 2D Culture

    Sandra Deitch, Bruce Z. Gao, Delphine Dean

    Molecular & Cellular Biomechanics, Vol.9, No.3, pp. 227-250, 2012, DOI:10.3970/mcb.2012.009.227

    Abstract Cardiomyocyte phenotype changes significantly in 2D culture systems depending on the substrate composition and organization. Given the variety of substrates that are used both for basic cardiac cell culture studies and for regenerative medicine applications, there is a critical need to understand how the different matrices influence cardiac cell mechanics. In the current study, the mechanical properties of neonatal rat cardiomyocytes cultured in a subconfluent layer upon aligned and unaligned collagen and fibronectin matrices were assessed over a two week period using atomic force microscopy. The elastic modulus was estimated by fitting the Hertz model to force curve data and… More >

Displaying 11-20 on page 2 of 13. Per Page