Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (166)
  • Open Access

    REVIEW

    Toxicological and Safety Considerations of Nanocellulose-Containing Packaging Materials

    Lucila M. Curi*, Maria C. Area, Maria E. Vallejos

    Journal of Renewable Materials, Vol.13, No.11, pp. 2109-2137, 2025, DOI:10.32604/jrm.2025.02025-0069 - 24 November 2025

    Abstract The global demand for renewable and sustainable non-petroleum-based resources is rapidly increasing. Lignocellulosic biomass is a valuable resource with broad potential for nanocellulose (NC) production. However, limited studies are available regarding the potential toxicological impact of NC. We provide an overview of the nanosafety implications associated mainly with nanofibrillated cellulose (CNF) and identify knowledge gaps. For this purpose, we present an analysis of the studies published from 2014 to 2025 in which the authors mention aspects related to toxicity in the context of packaging. We also analyze the main methods used for toxicity evaluations and… More > Graphic Abstract

    Toxicological and Safety Considerations of Nanocellulose-Containing Packaging Materials

  • Open Access

    ARTICLE

    Influence of LiCF3SO3 on the Conductivity and Other Characteristics of Methylcellulose/PVA Blend-Based Electrolytes

    Nurrul Asyiqin Shamsuri1, Zamil Khairuddin2, Muhamad Hafiz Hamsan3, Norhana Abdul Halim4, Mohd Fakhrul Zamani Kadir1,5, Muhammad Fadhlullah Shukur6,7,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 729-742, 2025, DOI:10.32604/jpm.2025.069060 - 30 September 2025

    Abstract Polymeric materials have emerged as a promising alternative to electrolytic solutions in energy storage applications. However, high crystallinity and poor ionic conductivity are the main barriers restricting their daily application. In this study, we propose a polymer electrolyte system consisting of methylcellulose-polyvinyl alcohol (MC-PVA) blend as host material and lithium trifluoromethanesulfonate (LiCF3SO3) as dopant, which was prepared using the solution-casting method. The electrochemical impedance spectroscopy (EIS) analysis revealed a maximum conductivity of 5.42 × 10−6 S cm−1 with 40 wt.% LiCF3SO3. The key findings demonstrated that the variation in the dielectric loss (εi) and dielectric constant (εr) was… More >

  • Open Access

    ARTICLE

    Acetylation of Corn Stalk (Zea mays) for Its Valorization

    Jhony César Muñoz Zambrano, Douglas Alexander Bermúdez Parrales, María Antonieta Riera*

    Journal of Polymer Materials, Vol.42, No.3, pp. 837-851, 2025, DOI:10.32604/jpm.2025.067277 - 30 September 2025

    Abstract Agricultural waste is a potentially interesting resource due to the compounds present. In this study, cellulose was extracted from corn stalks (Zea mays) and subsequently converted into cellulose acetate (CA). Before the extraction process, the waste sample was characterized by pH, moisture, ash, protein content, total reducing sugars (TRS), carbohydrates, cellulose, hemicellulose, and lignin. Acid and alkaline hydrolysis were performed with different reagents, concentrations, and extraction times. Sulfuric acid (H2SO4) and acetic acid (CH3COOH) were used in the acid hydrolysis, while sodium hydroxide (NaOH) was used in the alkaline hydrolysis. Three concentrations (0.62, 1.25, 2.5)% and two… More >

  • Open Access

    REVIEW

    Extraction, Utilization, Functional Modification, and Application of Cellulose and Its Derivatives

    Wohua He, Fangji Wu, Haoqun Hong*

    Journal of Renewable Materials, Vol.13, No.9, pp. 1707-1763, 2025, DOI:10.32604/jrm.2025.02025-0005 - 22 September 2025

    Abstract Under the background of the current energy crisis and environmental pollution, the development of green and sustainable materials has become particularly urgent. As one of the most abundant natural polymers on earth, cellulose has attracted wide attention due to its green recycling, sustainable development, degradability, and low cost. Therefore, cellulose and its derivatives were used as the starting point for comprehensive analysis. First, the basic structural properties of cellulose were discussed, and then the extraction and utilization methods of cellulose were reviewed, including Sodium Hydroxide based solvent system, N, N-Dimethylacetamide/Lithium Chloride System, N-Methylmorpholine-N-Oxide (NMMO) system, More > Graphic Abstract

    Extraction, Utilization, Functional Modification, and Application of Cellulose and Its Derivatives

  • Open Access

    ARTICLE

    Iron Modified Opuntia ficus-indica Cladode Powder as a Novel Adsorbent for Dyes Molecules

    Mehrzia Krimi1,*, Nabil Nasri1, Alma Jandoubi1, Sami Boufi2, Rached Ben Hassen1

    Journal of Renewable Materials, Vol.13, No.8, pp. 1623-1644, 2025, DOI:10.32604/jrm.2025.02025-0023 - 22 August 2025

    Abstract In this study, Opuntia ficus-indica cladode powder (OFIC), locally sourced from Rabta in Tunis, was utilized as a novel, eco-friendly adsorbent in both raw and iron(III) chloride-modified forms. The presence of iron in the modified material was confirmed by X-ray fluorescence spectroscopy (XRF). The neat and modified biomass were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), and their usefulness as adsorbent for cationic Neutral Red (NR) and anionic Congo Red (CR) dyes were explored under batch conditions. Equilibrium studies revealed that the iron-modified Fe(OH)x@Cellulose adsorbent exhibited… More > Graphic Abstract

    Iron Modified <i>Opuntia ficus-indica</i> Cladode Powder as a Novel Adsorbent for Dyes Molecules

  • Open Access

    REVIEW

    Plant-Based Cellulose Nanopapers with Applications for Packaging, Protective Films and Energy Devices

    Verónica L. Mucci, Mirta I. Aranguren*

    Journal of Renewable Materials, Vol.13, No.8, pp. 1491-1519, 2025, DOI:10.32604/jrm.2025.02024-0079 - 22 August 2025

    Abstract Interest in the use of cellulose nanomaterial’s continues to grow, both in research and industry, not only due to the abundance of raw materials, low toxicity and sustainability, but also due to the attractive physical and chemical properties that make nanocelluloses useful for a wide range of end-use applications. Among the large number of potential uses, and nanocelluloses modification and processing strategies, the chosen topic of this review focuses exclusively on plant-derived cellulose microfibers/nanofibers (CNF) and cellulose nanocrystals (CNC) processed into 2D structures—nanopapers and nanofilms—fabricated as self-standing films or applied as coatings. The end uses… More > Graphic Abstract

    Plant-Based Cellulose Nanopapers with Applications for Packaging, Protective Films and Energy Devices

  • Open Access

    ARTICLE

    Boosting Structural and Dielectric Properties of Polyvinyl Alcohol/Starch/Carboxymethyl Cellulose Films with Iron-Doped Carbon Quantum Dots for Advanced Applications

    Lekaa K. Abdul Karem1, Badriah Saad Al-Farhan2, Ghada M. G. Eldin3, Samir Kamel4, Ahmed M. Khalil5,*

    Journal of Renewable Materials, Vol.13, No.7, pp. 1459-1473, 2025, DOI:10.32604/jrm.2025.02025-0046 - 22 July 2025

    Abstract In this study, the casting process is used to fabricate modified polyvinyl alcohol (PVA), starch (S), and carboxymethyl cellulose (CMC) polymer blend films (PVA/S/CMC) loaded with various concentrations of iron-doped carbon quantum dots (Fe-CQDs) and denoted as (PVA/S/CMC@Fe-CQDs). A one-step microwave strategy was employed as a facile method to prepare Fe-CQDs. Through a series of characterization techniques, fourier-transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) have been used to show the successful integration of Fe-CQDs into the PVA/S/CMC matrix. Loading the synthesized Fe-CQDs to the polymeric matrix significantly enhanced the… More > Graphic Abstract

    Boosting Structural and Dielectric Properties of Polyvinyl Alcohol/Starch/Carboxymethyl Cellulose Films with Iron-Doped Carbon Quantum Dots for Advanced Applications

  • Open Access

    ARTICLE

    An Investigation into the Cationic Dye Adsorption Capacity of Prickly Pear Cactus-Derived Cellulose

    Alma Jandoubi, Mehrzia Krimi, Rached Ben Hassen*

    Journal of Renewable Materials, Vol.13, No.7, pp. 1389-1411, 2025, DOI:10.32604/jrm.2025.02025-0022 - 22 July 2025

    Abstract This research aims to investigate the potential of a plant cellulose developed from Opuntia ficus-indica (OFI) cladode as a sustainable and renewable adsorbent for the removal of neutral red (NR), a cationic dye pollutant, from aqueous environments. Analysis of raw and treated OFI using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) demonstrated the successful extraction of type cellulose. The Brunauer–Emmett–Teller (BET) analysis of the nitrogen adsorption-desorption isotherm revealed an improved specific surface area of 12.4 m2/g after treatment. A systematic study of key parameters in batch adsorption experiments revealed removal rates… More > Graphic Abstract

    An Investigation into the Cationic Dye Adsorption Capacity of Prickly Pear Cactus-Derived Cellulose

  • Open Access

    REVIEW

    Nanocellulose: A Comprehensive Review of Sustainable Applications and Innovations

    Arun Kumar1, Revanasiddappa Moolemane1, Thulasi Rajendran2, Suresh Babu Naidu Krishna3,4,*

    Journal of Renewable Materials, Vol.13, No.7, pp. 1315-1346, 2025, DOI:10.32604/jrm.2025.02024-0050 - 22 July 2025

    Abstract In the past two decades, nanocellulose has become an innovative material with unique properties. This substance has exceptional mechanical strength, an extensive surface area, and biodegradability. Collaborative integration of nanocellulose offers a more environmentally friendly solution to the current limitations by substituting carbon. Due to its versatility, nanocellulose is commonly employed in various industrial sectors, including paints, adhesives, paper production, and biodegradable polymers. Such versatility enables the creation of customized structures for potential use in emulsion and dispersion applications. Given its biocompatibility and nontoxicity, nanocellulose is particularly well-suited for biomedical purposes such as tissue engineering, More > Graphic Abstract

    Nanocellulose: A Comprehensive Review of Sustainable Applications and Innovations

  • Open Access

    REVIEW

    A Review: Sources, Preparation and Application of Nanocellulose

    Haoquan Xue1, Yujie Zhang1, Zhuang Zhao1, Haoran Gao1, Wanlin Bao1, Jiaxuan Li2, Zhiheng Zhang2, Qi Wang1, Qiang He1,*

    Journal of Polymer Materials, Vol.42, No.2, pp. 379-409, 2025, DOI:10.32604/jpm.2025.066695 - 14 July 2025

    Abstract Nanocellulose, derived from abundant lignocellulosic biomass, has emerged as a transformative material with unparalleled versatility across industries. This review systematically analyzes its sources, extraction methods, and multidimensional applications. Key findings include: (1) Plant fiber hierarchy dictates nanocellulose properties, with wood-derived cellulose offering high crystallinity and agricultural waste enabling cost-effective production. (2) Acid hydrolysis remains dominant for cellulose nanocrystals (CNCs), while mechanical methods yield high-aspect-ratio cellulose nanofibrils (CNFs). (3) Nanocellulose’s mechanical strength, biocompatibility, and tunable surface chemistry drive innovations in energy storage (e.g., supercapacitors), biosensors (e.g., glucose monitoring), and biomedical engineering (e.g., 3D-printed scaffolds). Challenges in More >

Displaying 1-10 on page 1 of 166. Per Page