Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (293)
  • Open Access

    ARTICLE

    Coupled Effects of Single-Vacancy Defect Positions on the Mechanical Properties and Electronic Structure of Aluminum Crystals

    Binchang Ma1, Xinhai Yu2, Gang Huang3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.071320 - 10 November 2025

    Abstract Vacancy defects, as fundamental disruptions in metallic lattices, play an important role in shaping the mechanical and electronic properties of aluminum crystals. However, the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood. In this study, transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys, suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation. To complement these observations, first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum. The stress response, total energy, density of states More >

  • Open Access

    ARTICLE

    Solid Model Generation and Shape Analysis of Human Crystalline Lens Using 3D Digitization and Scanning Techniques

    José Velázquez, Dolores Ojados, Adrián Semitiel, Francisco Cavas*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1821-1837, 2025, DOI:10.32604/cmes.2025.071131 - 26 November 2025

    Abstract This research establishes a methodological framework for generating geometrically accurate 3D representations of human crystalline lenses through scanning technologies and digital reconstruction. Multiple scanning systems were evaluated to identify optimal approaches for point cloud processing and subsequent development of parameterized solid models, facilitating comprehensive morpho-geometric characterization. Experimental work was performed at the 3D Scanning Laboratory of SEDIC (Industrial Design and Scientific Calculation Service) at the Technical University of Cartagena, employing five distinct scanner types based on structured light, laser, and infrared technologies. Test specimens—including preliminary calibration using a lentil and biological analysis of a human… More >

  • Open Access

    ARTICLE

    Microwave-Assisted Synthesis, Characterization, and Performance Assessment of Lemongrass-Derived Activated Carbon for Removal of Fe and Mn from Acid Mine Drainage

    Lailan Ni`mah1,*, Sri Rachmania Juliastuti2, Mahfud Mahfud2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2169-2190, 2025, DOI:10.32604/jrm.2025.02025-0044 - 24 November 2025

    Abstract This study evaluates the effectiveness of microwave technology in producing activated carbon from lemongrass waste, an underutilized agricultural byproduct. Microwave-assisted production offers faster heating, lower energy consumption, and better process control compared to conventional methods. It also enhances pore development, resulting in larger, cleaner, and more uniform pores, making the activated carbon more effective for adsorption. The microwave-assisted process significantly accelerates production, reducing the required time to just 10 min at a power of 400 W. Activated carbon derived from lemongrass waste at 400 W exhibits a water absorption capacity of 7.88%, ash content of… More > Graphic Abstract

    Microwave-Assisted Synthesis, Characterization, and Performance Assessment of Lemongrass-Derived Activated Carbon for Removal of Fe and Mn from Acid Mine Drainage

  • Open Access

    ARTICLE

    Genome-Wide Identification and Characterization of FAR1 in Phaseolus vulgaris under Salt and Drought Stress Conditions

    Abdil Hakan Eren*

    Phyton-International Journal of Experimental Botany, Vol.94, No.10, pp. 3085-3107, 2025, DOI:10.32604/phyton.2025.069506 - 29 October 2025

    Abstract The FAR1-related sequence (FAR1) gene family consists of transcription factors that originated from transposases and is crucial for light signaling and stress adaptation in plants. Despite the recognized importance of FAR1 genes in model organisms, their genomic architecture, structural variability, and expression patterns in Phaseolus vulgaris have yet to be investigated. This study offers the inaugural comprehensive genome-wide identification and characterization of the FAR1 gene family in P. vulgaris. A total of 27 PvulFAR1 genes were identified, and their chromosomal distribution, gene structures, conserved domains, and phylogenetic relationships were analyzed systematically. The promoter regions of these genes were discovered… More >

  • Open Access

    ARTICLE

    LiSBOA: Enhancing LiDAR-Based Wind Turbine Wake and Turbulence Characterization in Complex Terrain

    Ahmad S. Azzahrani*

    Energy Engineering, Vol.122, No.11, pp. 4703-4713, 2025, DOI:10.32604/ee.2025.067398 - 27 October 2025

    Abstract The Light Detection and Ranging (LiDAR) data analysis method has emerged as a powerful and versatile tool for characterizing atmospheric conditions and modeling light propagation through various media. In the context of renewable energy, particularly wind energy, LiDAR is increasingly utilized to analyze wind flow, turbine wake effects, and turbulence in complex terrains. This study focuses on advancing LiDAR data interpretation through the development and application of the LiDAR Statistical Barnes Objective Analysis (LiSBOA) method. LiSBOA enhances the capacity of scanning LiDAR systems by enabling more precise optimization of scan configurations and improving the retrieval… More >

  • Open Access

    REVIEW

    A Comprehensive Study on Application and Prospect of Hydrogel Detection Methods

    Caixia Chen1, Pengyu Liu1, Changhua Wang1, Yanyan Xie1, Wei Wang1,*, Xiaomin Kang2,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 621-660, 2025, DOI:10.32604/jpm.2025.068852 - 30 September 2025

    Abstract Due to their high water content, stimulus responsiveness, and biocompatibility, hydrogels, which are functional materials with a three-dimensional network structure, are widely applied in fields such as biomedicine, environmental monitoring, and flexible electronics. This paper provides a systematic review of hydrogel characterization methods and their applications, focusing on primary evaluation techniques for physical properties (e.g., mechanical strength, swelling behavior, and pore structure), chemical properties (e.g., composition, crosslink density, and degradation behavior), biocompatibility, and functional properties (e.g., drug release, environmental stimulus response, and conductivity). It analyzes the challenges currently faced by characterization methods, such as a More >

  • Open Access

    ARTICLE

    Genomic and Functional Characterization of Thermophilic Paenibacillus sp. VCA1: A Biocontrol Agent Isolated from El Chichón Volcano Crater Lake

    Nancy Abril Martínez-López1, Betsy Anaid Peña-Ocaña2, Rodolfo García-Contreras3, Toshinari Maeda4, Reiner Rincón-Rosales1, Federico Antonio Gutiérrez-Miceli1, Víctor Manuel Ruíz-Valdiviezo1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.9, pp. 2729-2743, 2025, DOI:10.32604/phyton.2025.068176 - 30 September 2025

    Abstract Species of the genus Paenibacillus, especially those from extreme environments that have been reported, are known for producing bioactive compounds with agricultural and biotechnological applications. In this study, we investigated the genomic and biochemical potential of Paenibacillus sp. VCA1 strain isolated from a thermophilic environment. Taxonomic identification was performed using whole genome similarity analysis, TETRA four-nucleotide frequency of occurrence analysis, ANI average nucleotide identity analysis, and gene distance analysis using digital DNA-DNA hybridization (dDDH). Functional analysis of the strain VCA1 was performed by detecting genes, enzymes, and genome subsystems involved in biocontrol and plant growth promotion,… More >

  • Open Access

    PROCEEDINGS

    Scattering Characterization of Elastic Wave in Solid Media and Scale Inversion Study of Inhomogeneous Bodies

    Ning Liu1,*, Dong Cai1, Shi-Kai Jian2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012511

    Abstract One intriguing phenomenon in seismograms is seismic coda, once dismissed as noise. In 1969, seismologist Aki proposed that these coda waves reveal critical insights into small-scale inhomogeneities in the Earth's interior [1]. This scattering effect highlights geological complexity and offers valuable information for exploring targets like unconventional oil and gas reservoirs [2-5]. This paper examines elastic wave propagation and scattering in solid media. We validate the effectiveness of simulating wave field scattering by employing the discrete element method alongside energy radiative transfer theory. Then, we explore elastic wave scattering and scale inversion of non-homogeneous bodies More >

  • Open Access

    ARTICLE

    Discovery and Characterization of Novel IKZF1/3 Glue Degraders against Multiple Hematological Cancer Cell Lines

    Ting Wei1,2,#, Pengli Wei2,3,#, Yalei Wang1,2, Yaqiu Mao2,3, Jian Yan2, Xiaotong Hu2, Zhenze Qi2, Xu Cai2, Changkai Jia2, Zhiyuan Zhao2, Bingkun Li2, Min Qiao2, Yaxin Zou2,3, Tingting Yang4, Shiyang Sun2, Xuesong Feng3, Pengyun Li2,*, Hongzhou Shang1,*, Zhibing Zheng2

    Oncology Research, Vol.33, No.10, pp. 2981-3006, 2025, DOI:10.32604/or.2025.065123 - 26 September 2025

    Abstract Objectives: Immunomodulatory drugs (IMiDs), functioning as molecular glue degraders, have been approved for treating various hematological malignancies; however, the inevitable acquired drug resistance resulting from their skeletal similarity and hematological toxicities poses significant obstacles to their clinical treatment. The study aimed to develop degraders with potent efficiency and low toxicity. Methods: Phenotypic profiling, elaborate structure-activity relationships (SAR), rational drug design and degradation profiles investigations, quantitative proteomics analysis and cell-based functional studies, and pharmacokinetic studies were conducted to develop more potent degraders. Results: This study developed novel CRBN-binding moieties through methylene deletion in lenalidomide’s isoindole core. Lead… More > Graphic Abstract

    Discovery and Characterization of Novel IKZF1/3 Glue Degraders against Multiple Hematological Cancer Cell Lines

  • Open Access

    ARTICLE

    Characterization, In Vitro Dissolution, and Drug Release Kinetics in Hard Capsule Shells Made from Hydrolyzed κ-Carrageenan and Xanthan Gum

    Tri Susanti1,2, Syahnur Haqiqoh1, Pratiwi Pudjiastuti2,*, Siti Wafiroh2,*, Esti Hendradi3, Oktavia Eka Puspita4, Nashriq Jailani5

    Journal of Renewable Materials, Vol.13, No.9, pp. 1841-1857, 2025, DOI:10.32604/jrm.2025.02024-0084 - 22 September 2025

    Abstract This study aims to enhance the mechanical properties, disintegration, and dissolution rates of cross-linked carrageenan (CRG) capsule shells by shortening the long chains of CRG through a hydrolysis reaction with citric acid (CA). The hydrolysis of CRG was carried out using varying concentrations of CA, resulting in hydrolyzed CRG (HCRG). This was followed by cross-linking with xanthan gum (XG) and the addition of sorbitol (SOR) as a plasticizer. The results indicated that the optimal swelling capacity of HCRG-XG/SOR hard-shell capsules occurred at a CA concentration of 0.5%, achieving a maximum swelling rate of 445.39% after… More >

Displaying 1-10 on page 1 of 293. Per Page