Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (245)
  • Open Access

    ARTICLE

    Effect of Processing and Cultivar on Thermo-Chemical Properties of Australian-Grown Hemp Hurd (Cannabis sativa L.)

    Johannes Fehrmann1,*, Benoit Belleville1, Barbara Ozarska1, Maya Ismayati2, Wahyu Dwianto2

    Journal of Renewable Materials, Vol.12, No.8, pp. 1475-1493, 2024, DOI:10.32604/jrm.2024.053741

    Abstract This study explored the thermo-chemical properties of industrial hemp hurd with different provenances, maturity stages, and retting protocols. The findings were then compared to hemp hurd used in the fabrication of citric acid-bonded ultra-low-density hemp hurd particleboard. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were employed to document the variability of the hurd and comprehend the potential impact on biobased composite applications. The choice of cultivar, maturity stage, and processing modality significantly influenced the chemical composition, presence of functional groups, and thermal stability of the hurd. Py-GC/MS revealed substantial variations… More > Graphic Abstract

    Effect of Processing and Cultivar on Thermo-Chemical Properties of Australian-Grown Hemp Hurd (<i>Cannabis sativa</i> L.)

  • Open Access

    ARTICLE

    Isolation of Microcrystalline Cellulose from Wood and Fabrication of Polylactic Acid (PLA) Based Green Biocomposites

    Selwin Maria Sekar1, Rajini Nagarajan1,*, Ponsuriyaprakash Selvakumar2, Ismail Sikiru Oluwarotimi3, Kumar Krishnan4, Faruq Mohammad5, Mohammed Rafi Shaik5, Nadir Ayrilmis6,*

    Journal of Renewable Materials, Vol.12, No.8, pp. 1455-1474, 2024, DOI:10.32604/jrm.2024.052952

    Abstract An innovative microcrystalline cellulose (MCC) natural fibre powder-reinforced PLA biocomposite was investigated using the hand lay-up technique. The polymer matrix composite (PMC) samples were prepared by varying the weight percentages (wt.%) of both PLA matrix and MCC reinforcement: pure PLA/100:0, 90:10, 80:20, 70:30, 60:40 and 50:50 wt.%, respectively. From the results obtained, MCC powder, with its impressive aspect ratio, proved to be an ideal reinforcement for the PLA, exhibiting exceptional mechanical properties. It was evident that the 80:20 wt.% biocomposite sample exhibited the maximum improvement in the tensile, flexural, notched impact, compressive strength and hardness… More >

  • Open Access

    ARTICLE

    Structural Characterization of Chloroplast Genome in Alpinia japonica (Thunb.) Miq., a Medicinal Plant of the Genus Alpinia

    Wentao Sheng, Xi Lei, Xinjie Chen, Quan Kuang*

    Phyton-International Journal of Experimental Botany, Vol.93, No.8, pp. 1897-1911, 2024, DOI:10.32604/phyton.2024.052395

    Abstract The analysis of chloroplast gene characteristics in Alpinia japonica (Thunb.) Miq. is of great significance for developing relevant genetic resources. The high-throughput sequencing and bioinformatic research were performed to analyze the chloroplast genome characteristics of A. japonica. The total chloroplast genome length of A. japonica was 161,906 bp, with a typical circular tetrameric structure. And 133 genes were annotated, comprising 87 protein-coding, 38 tRNA, and 8 rRNA genes. Furthermore, 22 genes contained two copies, and 18 genes owned introns. Repeat sequence analysis showed that it contains 321 simple sequence repeats (SSRs) and 37 long segment repeats. Compared with… More >

  • Open Access

    ARTICLE

    Production and Characterization of a Composite Based on Plaster and Juncus Maritimus Plant Fibers

    Mina Amazal1,*, Soumia Mounir1,2, Asma Souidi1, Malika Atigui1, Slimane Oubeddou1, Youssef Maaloufa1,2, Ahmed Aharoune1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2059-2076, 2024, DOI:10.32604/fdmp.2024.050613

    Abstract Nowadays, materials with a limited impact on the environment are required in the construction sector. Considering the interesting properties of natural elements such as natural fibers, it seems advantageous to use them to reinforce materials while protecting the environment and guaranteeing economic gain. Along these lines, this research was devoted to studying the effect of untreated natural fibers extracted from the Juncus maritimus plant (from Southern Morocco) on plaster. First, the effect of the percentage of added fibers on the fluidity of the plaster was evaluated by means of the Marsh’s cone method, that is,… More >

  • Open Access

    REVIEW

    Overview of the Synthesis, Characterization, and Application of Tannin-Glyoxal Adhesive for Wood-Based Composites

    Awanda Wira Anggini1,2, Rita Kartika Sari2, Efri Mardawati3,4, Tati Karliati5, Apri Heri Iswanto6, Muhammad Adly Rahandi Lubis1,4,*

    Journal of Renewable Materials, Vol.12, No.7, pp. 1165-1186, 2024, DOI:10.32604/jrm.2024.051854

    Abstract More than a century after its initial synthesis, urea-formaldehyde (UF) resins still have dominant applications as adhesives, paints, and coatings. However, formaldehyde in this industry produces formaldehyde emissions that are dangerous to health. Scientists have spent the last decade replacing formaldehyde and phenol with environmentally friendly substances such as glyoxal and tannin to create bio-based adhesives. This review covers recent advances in synthesizing glyoxal tannin-based resins, especially those made from sustainable raw material substitutes and changes made to synthetic processes to improve mechanical properties. The efficacy of using tannin-glyoxal adhesives in producing wood-based composites has… More > Graphic Abstract

    Overview of the Synthesis, Characterization, and Application of Tannin-Glyoxal Adhesive for Wood-Based Composites

  • Open Access

    ARTICLE

    Extraction and Detailed Physico-Chemical Characterization of Lignocellulosic Fibers Derived from Lonchocarpus cyanescens

    Edja Florentin Assanvo1,*, Kanga Marius N’GATTA1, Kicoun Jean-Yves N’zi Touré1,2,3, Amenan Sylvie Konan4, David Boa4

    Journal of Polymer Materials, Vol.41, No.2, pp. 55-68, 2024, DOI:10.32604/jpm.2024.055397

    Abstract The present study focused on extraction of Lonchocarpus cyanescens (L. cyanescens) fiber (LCF) and the physico-chemical properties of the obtained fiber. The fiber was extracted by manual and traditional rating methods, treated with sodium hydroxide, and characterized to determine its performance properties. The chemical composition of cellulose, hemicellulose, and lignin was determined according to the acid detergent, neutral detergent, and Klason methods, respectively. The results show significant quantities of cellulose (33%), hemicellulose (30%), and lignin (24%) in the studied fibers. LCF exhibited a porous multicellular and poly lamellate network structure (FE-SEM) with a crystallinity index of 56.5%. More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Photothermal Responded Chitosan/Nanodiamond-Based Composite Beads with Enhanced Control Release Properties

    Yu Luo1,2,3, Mengna Zong1,2,3, Jin Wang1,2,3, Xuechun Wang1,2,3, Bo Bai1,2,3,*, Chunyu Zhou1,2,3,*, Junlin Zhu1,2,3, Jianyu Xing1,2,3, Moses M. C. Carlon Jr1,2,3

    Journal of Polymer Materials, Vol.41, No.2, pp. 87-103, 2024, DOI:10.32604/jpm.2024.054660

    Abstract In this research, we developed a novel photo-stimulation-responsive composite sphere with a semi-interpenetrating polymer network (semi-IPN) structure, synthesized via an alkali gel method, to enhance the efficiency of agrochemicals. Chitosan (CS) serves as the structural matrix and protective shell, with a loading capacity for the plant growth hormone indole-3-butyric acid (IBA) of up to 41.73 μg/mg, effectively controlling the abrupt release of auxin. The incorporation of photothermal detonation nanodiamond (DND) and the photosensitive poly(N-isopropylacrylamide) (PNIPAm) endows the spheres with the ability to respond to light and temperature stimuli, achieving intelligent control over IBA release. Characterization… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of CMC-Wrapped ZnONPs at Different Calcination Temperatures for Photocatalytic Degradation of Methylene Blue Dye under Sunlight

    Abhishek Kumar Patel, Ashlesha P. Kawale, Neeru Sharma, Nishant Shekhar, Subhash Banerjee*, Arti Srivastava*

    Journal of Polymer Materials, Vol.41, No.2, pp. 69-86, 2024, DOI:10.32604/jpm.2024.052695

    Abstract This study aims to synthesize, characterize, and evaluate the photocatalytic efficiency of carboxymethyl cellulose (CMC) wrapped ZnONPs for the degradation of methylene blue (MB) dye under sunlight and also focuses on the effect of varying calcination temperatures on crystallite size of the synthesized ZnONPs@CMC. It focuses on developing biopolymer (CMC) wrapped ZnO nanoparticles (ZnONPs@CMC) at different calcination temperatures. ZnONPs@CMC are synthesized using zinc acetate dihydrate as a precursor under alkaline conditions, followed by adding capping agent CMC at various calcination temperatures ranging from 250°C to 650°C. The nanomaterials are characterized by UV-Vis, FTIR, and powder… More >

  • Open Access

    ARTICLE

    Characterization of Hydroxyapatite Extracted from Crab Shell Using the Hydrothermal Method with Varying Holding Times

    Deni Fajar Fitriyana1,2,*, Rifky Ismail1,3,*, Athanasius Priharyoto Bayuseno1, Januar Parlaungan Siregar4,5, Tezara Cionita6

    Journal of Renewable Materials, Vol.12, No.6, pp. 1145-1163, 2024, DOI:10.32604/jrm.2024.052165

    Abstract Hydroxyapatite (HA) is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties. Crab shells are usually disregarded as waste material despite their significant CaCO content, and have not been widely utilized in the synthesis of HA. This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time. This study utilized precipitated calcium carbonate (PCC) derived from crab shells. With a hydrothermal reactor set at 160°C and varying holding times of 14 (HA_14), 16 (HA_16), and 18 (HA_18)… More > Graphic Abstract

    Characterization of Hydroxyapatite Extracted from Crab Shell Using the Hydrothermal Method with Varying Holding Times

  • Open Access

    ARTICLE

    Optimization and Characterization of Combined Degumming Process of Typha angustata L. Stem Fibers

    Sana Rezig*, Foued Khoffi, Mounir Jaouadi, Asma Eloudiani, Slah Msahli

    Journal of Renewable Materials, Vol.12, No.6, pp. 1071-1086, 2024, DOI:10.32604/jrm.2024.049935

    Abstract Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers. Researchers over the years have explored many plant fibers using different extraction processes to study their physical, chemical, and mechanical properties. In this context, the present study relates to the extraction, characterization, and optimization of Typha angustata L. stem fibers. For this purpose, desirability functions and response surface methodology were applied to simultaneously optimize the diameter (D), linear density (LD); yield (Y), lignin fraction (L), and tenacity (T) of Typha stem fibers. Typha stems have been subjected to both alkali (NaOH) and enzymatic… More > Graphic Abstract

    Optimization and Characterization of Combined Degumming Process of <i>Typha angustata</i> L. Stem Fibers

Displaying 1-10 on page 1 of 245. Per Page