Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (414)
  • Open Access

    ARTICLE

    Driving Pattern Profiling and Classification Using Deep Learning

    Meenakshi Malik1, Rainu Nandal1, Surjeet Dalal2, Vivek Jalglan3, Dac-Nhuong Le4,5,*

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 887-906, 2021, DOI:10.32604/iasc.2021.016272 - 20 April 2021

    Abstract The last several decades have witnessed an exponential growth in the means of transport globally, shrinking geographical distances and connecting the world. The automotive industry has grown by leaps and bounds, with millions of new vehicles being sold annually, be it for personal commuting or for public or commodity transport. However, millions of motor vehicles on the roads also mean an equal number of drivers with varying levels of skill and adherence to safety regulations. Very little has been done in the way of exploring and profiling driving patterns and vehicular usage using real world… More >

  • Open Access

    REVIEW

    Analyzing Customer Reviews on Social Media via Applying Association Rule

    Nancy Awadallah Awad1,*, Amena Mahmoud2

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1519-1530, 2021, DOI:10.32604/cmc.2021.016974 - 13 April 2021

    Abstract The rapid growth of the use of social media opens up new challenges and opportunities to analyze various aspects and patterns in communication. In-text mining, several techniques are available such as information clustering, extraction, summarization, classification. In this study, a text mining framework was presented which consists of 4 phases retrieving, processing, indexing, and mine association rule phase. It is applied by using the association rule mining technique to check the associated term with the Huawei P30 Pro phone. Customer reviews are extracted from many websites and Facebook groups, such as re-view.cnet.com, CNET. Facebook and… More >

  • Open Access

    ARTICLE

    An Adaptive Anomaly Detection Algorithm Based on CFSFDP

    Weiwu Ren1,*, Xiaoqiang Di1, Zhanwei Du2, Jianping Zhao1

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2057-2073, 2021, DOI:10.32604/cmc.2021.016678 - 13 April 2021

    Abstract CFSFDP (Clustering by fast search and find of density peak) is a simple and crisp density clustering algorithm. It does not only have the advantages of density clustering algorithm, but also can find the peak of cluster automatically. However, the lack of adaptability makes it difficult to apply in intrusion detection. The new input cannot be updated in time to the existing profiles, and rebuilding profiles would waste a lot of time and computation. Therefore, an adaptive anomaly detection algorithm based on CFSFDP is proposed in this paper. By analyzing the influence of new input… More >

  • Open Access

    ARTICLE

    Automatic Data Clustering Based Mean Best Artificial Bee Colony Algorithm

    Ayat Alrosan1, Waleed Alomoush2, Mohammed Alswaitti3,*, Khalid Alissa4, Shahnorbanun Sahran5, Sharif Naser Makhadmeh6, Kamal Alieyan7

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1575-1593, 2021, DOI:10.32604/cmc.2021.015925 - 13 April 2021

    Abstract Fuzzy C-means (FCM) is a clustering method that falls under unsupervised machine learning. The main issues plaguing this clustering algorithm are the number of the unknown clusters within a particular dataset and initialization sensitivity of cluster centres. Artificial Bee Colony (ABC) is a type of swarm algorithm that strives to improve the members’ solution quality as an iterative process with the utilization of particular kinds of randomness. However, ABC has some weaknesses, such as balancing exploration and exploitation. To improve the exploration process within the ABC algorithm, the mean artificial bee colony (MeanABC) by its… More >

  • Open Access

    ARTICLE

    Modeling Bacterial Species: Using Sequence Similarity with Clustering Techniques

    Miguel-Angel Sicilia1,*, Elena García-Barriocanal1, Marçal Mora-Cantallops1, Salvador Sánchez-Alonso1, Lino González2

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1661-1672, 2021, DOI:10.32604/cmc.2021.015874 - 13 April 2021

    Abstract Existing studies have challenged the current definition of named bacterial species, especially in the case of highly recombinogenic bacteria. This has led to considering the use of computational procedures to examine potential bacterial clusters that are not identified by species naming. This paper describes the use of sequence data obtained from MLST databases as input for a k-means algorithm extended to deal with housekeeping gene sequences as a metric of similarity for the clustering process. An implementation of the k-means algorithm has been developed based on an existing source code implementation, and it has been More >

  • Open Access

    ARTICLE

    Remote Health Monitoring Using IoT-Based Smart Wireless Body Area Network

    Farhan Aadil1, Bilal Mehmood1, Najam Ul Hasan2, Sangsoon Lim3,*, Sadia Ejaz1, Noor Zaman4

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2499-2513, 2021, DOI:10.32604/cmc.2021.014647 - 13 April 2021

    Abstract A wireless body area network (WBAN) consists of tiny health-monitoring sensors implanted in or placed on the human body. These sensors are used to collect and communicate human medical and physiological data and represent a subset of the Internet of Things (IoT) systems. WBANs are connected to medical servers that monitor patients’ health. This type of network can protect critical patients’ lives due to the ability to monitor patients’ health continuously and remotely. The inter-WBAN communication provides a dynamic environment for patients allowing them to move freely. However, during patient movement, the WBAN patient nodes… More >

  • Open Access

    ARTICLE

    Determination of Cup to Disc Ratio Using Unsupervised Machine Learning Techniques for Glaucoma Detection

    R. Praveena*, T. R. GaneshBabu

    Molecular & Cellular Biomechanics, Vol.18, No.2, pp. 69-86, 2021, DOI:10.32604/mcb.2021.014622 - 09 April 2021

    Abstract The cup nerve head, optic cup, optic disc ratio and neural rim configuration are observed as important for detecting glaucoma at an early stage in clinical practice. The main clinical indicator of glaucoma optic cup to disc ratio is currently determined manually by limiting the mass screening was potential. This paper proposes the following methods for an automatic cup to disc ratio determination. In the first part of the work, fundus image of the optic disc region is considered. Clustering means K is used automatically to extract the optic disc whereas K-value is automatically selected… More >

  • Open Access

    ARTICLE

    Traffic Engineering in Dynamic Hybrid Segment Routing Networks

    Yingya Guo1,2,3,7, Kai Huang1, Cheng Hu4,*, Jiangyuan Yao5, Siyu Zhou6

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 655-670, 2021, DOI:10.32604/cmc.2021.016364 - 22 March 2021

    Abstract The emergence of Segment Routing (SR) provides a novel routing paradigm that uses a routing technique called source packet routing. In SR architecture, the paths that the packets choose to route on are indicated at the ingress router. Compared with shortest-path-based routing in traditional distributed routing protocols, SR can realize a flexible routing by implementing an arbitrary flow splitting at the ingress router. Despite the advantages of SR, it may be difficult to update the existing IP network to a full SR deployed network, for economical and technical reasons. Updating partial of the traditional IP… More >

  • Open Access

    ARTICLE

    Nature-Inspired Level Set Segmentation Model for 3D-MRI Brain Tumor Detection

    Oday Ali Hassen1, Sarmad Omar Abter2, Ansam A. Abdulhussein3, Saad M. Darwish4,*, Yasmine M. Ibrahim4, Walaa Sheta5

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 961-981, 2021, DOI:10.32604/cmc.2021.014404 - 22 March 2021

    Abstract Medical image segmentation has consistently been a significant topic of research and a prominent goal, particularly in computer vision. Brain tumor research plays a major role in medical imaging applications by providing a tremendous amount of anatomical and functional knowledge that enhances and allows easy diagnosis and disease therapy preparation. To prevent or minimize manual segmentation error, automated tumor segmentation, and detection became the most demanding process for radiologists and physicians as the tumor often has complex structures. Many methods for detection and segmentation presently exist, but all lack high accuracy. This paper’s key contribution… More >

  • Open Access

    ARTICLE

    Maximizing Throughput in Wireless Multimedia Sensor Network using Soft Computing Techniques

    Krishnan Muthumayil1,*, Thangaiyan Jayasankar2, Nagappan Krishnaraj3, Mohamed Yacin Sikkandar4, Prakash Nattanmai Balasubramanian5, Chokkalingam Bharatiraja6

    Intelligent Automation & Soft Computing, Vol.27, No.3, pp. 771-784, 2021, DOI:10.32604/iasc.2021.012462 - 01 March 2021

    Abstract Wireless Multimedia Sensor Networks (WMSN) provides valuable information for scalar data, images, audio, and video processing in monitoring and surveillance applications. Multimedia streaming, however, is highly challenging for networks as energy restriction sensor nodes limit the potential data transmission bandwidth and lead to reduced throughput. WMSN’s two key design challenges, which can be achieved by the clustering process, are energy efficiency and throughput maximization. The use of the clustering technique helps to organise the sensor nodes into clusters, and between each cluster a cluster head (CH) will be chosen. This paper introduces a new Artificial… More >

Displaying 321-330 on page 33 of 414. Per Page