Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (227)
  • Open Access

    ARTICLE

    Two-Stage LightGBM Framework for Cost-Sensitive Prediction of Impending Failures of Component X in Scania Trucks

    Si-Woo Kim, Yong Soo Kim*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073492 - 12 January 2026

    Abstract Predictive maintenance (PdM) is vital for ensuring the reliability, safety, and cost efficiency of heavy-duty vehicle fleets. However, real-world sensor data are often highly imbalanced, noisy, and temporally irregular, posing significant challenges to model robustness and deployment. Using multivariate time-series data from Scania trucks, this study proposes a novel PdM framework that integrates efficient feature summarization with cost-sensitive hierarchical classification. First, the proposed last_k_summary method transforms recent operational records into compact statistical and trend-based descriptors while preserving missingness, allowing LightGBM to leverage its inherent split rules without ad-hoc imputation. Then, a two-stage LightGBM framework is developed… More >

  • Open Access

    ARTICLE

    ZMIZ2/MCM3 Axis Participates in Triple-Negative Breast Cancer Progression

    Xiaopan Zou1,2, Meiyang Sun3, Xin Jiang1, Jingze Yu2, Xiaomeng Li4,*, Bingyu Nie1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.066662 - 30 December 2025

    Abstract Objective: Triple-negative breast cancer (TNBC) is highly aggressive and lacks an effective targeted therapy. This study aimed to elucidate the functions and possible mechanisms of action of zinc finger miz-type containing 2 (ZMIZ2) and minichromosome maintenance complex component 3 (MCM3) in TNBC progression. Methods: The relationship between ZMIZ2 expression and clinical characteristics of TNBC was investigated. In vitro and in vivo experiments were performed to investigate the role of ZMIZ2 dysregulation in TNBC cell malignant behaviors. The regulatory relationship between ZMIZ2 and MCM3 was also explored. Transcriptome sequencing was performed to elucidate possible mechanisms underlying the ZMIZ2/MCM3… More >

  • Open Access

    ARTICLE

    Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems

    Junxiang Li1,2, Zhipeng Dong2, Ben Han3, Jianqiao Chen3, Xinxin Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070816 - 10 November 2025

    Abstract Owing to their global search capabilities and gradient-free operation, metaheuristic algorithms are widely applied to a wide range of optimization problems. However, their computational demands become prohibitive when tackling high-dimensional optimization challenges. To effectively address these challenges, this study introduces cooperative metaheuristics integrating dynamic dimension reduction (DR). Building upon particle swarm optimization (PSO) and differential evolution (DE), the proposed cooperative methods C-PSO and C-DE are developed. In the proposed methods, the modified principal components analysis (PCA) is utilized to reduce the dimension of design variables, thereby decreasing computational costs. The dynamic DR strategy implements periodic… More >

  • Open Access

    ARTICLE

    A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization

    Zhao Li1, Hongyu Xu1,*, Shuai Zhang2, Jintao Cui1, Xiaofeng Liu1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068763 - 10 November 2025

    Abstract The moving morphable component (MMC) topology optimization method, as a typical explicit topology optimization method, has been widely concerned. In the MMC topology optimization framework, the surrogate material model is mainly used for finite element analysis at present, and the effectiveness of the surrogate material model has been fully confirmed. However, there are some accuracy problems when dealing with boundary elements using the surrogate material model, which will affect the topology optimization results. In this study, a boundary element reconstruction (BER) model is proposed based on the surrogate material model under the MMC topology optimization… More >

  • Open Access

    ARTICLE

    Tailoring Tribological Behavior of PMMA Using Multi-Component Nanofillers: Insights into Friction, Wear, and Third-Body Flow Dynamics

    Du-Yi Wang1, Shih-Chen Shi1,*, Dieter Rahmadiawan1,2

    Journal of Polymer Materials, Vol.42, No.4, pp. 1075-1095, 2025, DOI:10.32604/jpm.2025.072263 - 26 December 2025

    Abstract Polymethyl methacrylate (PMMA) is widely used in diverse applications such as protective components (e.g., automotive lamp covers and structural casings), optical devices, and biomedical products, owing to its lightweight nature and impact resistance. However, its surface hardness and wear resistance remain insufficient under prolonged exposure to abrasive environments. In this study, a multi-filler strategy with nano-silica (SiO2), brominated lignin (Br-Lignin), and cellulose nanocrystals (CNCs) was employed to enhance PMMA tribological properties. SiO2 provided localized reinforcement, Br-Lignin established stable network structures, and CNCs improved compactness, enabling strong synergistic effects. As a result, the composites achieved up to More >

  • Open Access

    REVIEW

    Traditional Uses, Polysaccharide Pharmacology, and Active Components Biosynthesis Regulation of Dendrobium officinale: A Review

    Ruikang Ma1,2, Ziying Huang1, Zexiu Zhang3, Ruohui Lu4, Menghan Li1, Zhiyi Luo3, Mengni Li5, Pengyue Zhang3, Xiaohong Lin3, Guozhuang Zhang1,*, Linlin Dong1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3721-3748, 2025, DOI:10.32604/phyton.2025.072062 - 01 December 2025

    Abstract Dendrobium officinale (DO) is a well-recognized medicinal and edible plant with a long history of application in traditional medicinal practices across China and Southeast Asia. Recent studies have demonstrated that DO is abundant in diverse bioactive compounds, including polysaccharides (DOP), flavonoids, alkaloids, and bibenzyls thought to exert a range of pharmacological effects, such as anti-tumor and immunomodulatory effects. However, our comprehensive understanding of two key aspects—pharmacological functions and biosynthetic mechanisms—of DO’s major constituents remains limited, especially when considered within the clinical contexts of traditional use. To address this gap, this study reviews DO’s historical applications, clinical effects, and… More > Graphic Abstract

    Traditional Uses, Polysaccharide Pharmacology, and Active Components Biosynthesis Regulation of <i>Dendrobium officinale</i>: A Review

  • Open Access

    ARTICLE

    A Comprehensive Analysis of the Mineral Profile of Three Wild Tulips in China

    Yue Ma1,2, Douwen Qin1,2, Weiqiang Liu1,2, Xiuting Ju1,2,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3527-3538, 2025, DOI:10.32604/phyton.2025.069643 - 01 December 2025

    Abstract Comprehensive evaluation based on mineral element content is one of the effective methods for the exploration and utilization of wild tulip germplasm resources. In this study, Tulipa iliensis, Tulipa tianschanica and Tulipa heterophylla distributed in China were used as the research objects. The contents of 10 mineral elements (N, K, P, S, Ca, Mg, Cu, Zn, Fe, Mn) in roots, bulbs and leaves were determined, and the three wild tulips were comprehensively evaluated by correlation analysis, principal component analysis and cluster analysis. The results showed distinct variations in mineral element content among different organs of T. iliensis, T. tianschanica and T.More >

  • Open Access

    ARTICLE

    MHD Thermosolutal Flow in Casson-Fluid Microchannels: Taguchi–GRA–PCA Optimization

    Amina Mahreen1, Fateh Mebarek-Oudina2,3,4,*, Amna Ashfaq1, Jawad Raza1, Sami Ullah Khan5, Hanumesh Vaidya6

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2829-2853, 2025, DOI:10.32604/fdmp.2025.072492 - 01 December 2025

    Abstract Understanding the complex interaction between heat and mass transfer in non-Newtonian microflows is essential for the development and optimization of efficient microfluidic and thermal management systems. This study investigates the magnetohydrodynamic (MHD) thermosolutal convection of a Casson fluid within an inclined, porous microchannel subjected to convective boundary conditions. The nonlinear, coupled equations governing momentum, energy, and species transport are solved numerically using the MATLAB bvp4c solver, ensuring high numerical accuracy and stability. To identify the dominant parameters influencing flow behavior and to optimize transport performance, a comprehensive hybrid optimization framework—combining a modified Taguchi design, Grey… More >

  • Open Access

    ARTICLE

    Explainable Data-Driven Modeling for Optimized Mix Design of 3D-Printed Concrete: Interpreting Nonlinear Synergies among Binder Components and Proportions

    Yassir M. Abbas*, Abdulaziz Alsaif*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1789-1819, 2025, DOI:10.32604/cmes.2025.073088 - 26 November 2025

    Abstract The rapid advancement of three-dimensional printed concrete (3DPC) requires intelligent and interpretable frameworks to optimize mixture design for strength, printability, and sustainability. While machine learning (ML) models have improved predictive accuracy, their limited transparency has hindered their widespread adoption in materials engineering. To overcome this barrier, this study introduces a Random Forests ensemble learning model integrated with SHapley Additive exPlanations (SHAP) and Partial Dependence Plots (PDPs) to model and explain the compressive strength behavior of 3DPC mixtures. Unlike conventional “black-box” models, SHAP quantifies each variable’s contribution to predictions based on cooperative game theory, which enables… More >

  • Open Access

    ARTICLE

    Data-Driven Component-Level Decision-Making for Online Remanufacturing of Gas-Insulated Switchgear

    Hansam Cho1, Seokho Moon1, Sunhyeok Hwang1, Seoung Bum Kim1,*, Younghoon Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1941-1967, 2025, DOI:10.32604/cmes.2025.072455 - 26 November 2025

    Abstract Accurately determining when and what to remanufacture is essential for maximizing the lifecycle value of industrial equipment. However, existing approaches face three significant limitations: (1) reliance on predefined mathematical models that often fail to capture equipment-specific degradation, (2) offline optimization methods that assume access to future data, and (3) the absence of component-level guidance. To address these challenges, we propose a data-driven framework for component-level decision-making. The framework leverages streaming sensor data to predict the remaining useful life (RUL) without relying on mathematical models, employs an online optimization algorithm suitable for practical settings, and, through More >

Displaying 1-10 on page 1 of 227. Per Page