Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (461)
  • Open Access

    ARTICLE

    Role of engineered Co4S3 and Ce2S3-Co4S3 binary composite materials for clean and high-performance energy solutions

    M. Danisha, Z. A. Sandhub, S. Sajida, S. R. Shafqata, R. Abbasc, M. Shahidd, N. Amjede, A. Abo Elnasrf, H. T. Alif, M. A. Razab,*

    Chalcogenide Letters, Vol.22, No.10, pp. 863-870, 2025, DOI:10.15251/CL.2025.2210.863

    Abstract The increase in energy crisis and environmental concerns are now considering as major hurdle in way to sustainability and clean energy solution. Metal sulfides have been investigated for the fabrication of energy conversion ad storage devices to overcome the effect of energy demand. In this concern, a microemulsion mediated hydrothermal method was employed for the successful synthesis of pure Co4S3 and Ce2S3-Co4S3 binary nanocomposite materials. This study was investigated for Supercapacitor application using cyclic voltammetry and electrochemical impedance spectroscopy. The scanning electron microscope analysis of composite material showed compact smooth morphology with strong interparticle interactions. The More >

  • Open Access

    ARTICLE

    CdS nanoparticles-Loaded 1D attapulgite Composites for Boosting Photocatalytic Activity

    Xiaowang Lu1,*, Cheng Luo1, Xinyu Zhu1, Ziwen Gu1, Chen Da1, Junyan Zhou1, Junchao Qian2

    Chalcogenide Letters, Vol.22, No.11, pp. 987-995, 2025, DOI:10.15251/CL.2025.2211.987

    Abstract Attapulgite clay-supported CdS composites were synthesized via hydrothermal approach and applied to remove Rhodamine B (RhB). The structural, morphological, and physicochemical properties of the materials were systematically characterized by XRD, TEM, XPS, BET and UV-Vis DRS. The combination of CdS and attapulgite could enhance active site availability and surface area, thereby boosting photocatalytic activity.The optimized CdS/attapulgite composite demonstrated remarkable photocatalytic efficiency under visible-light illumination. In addition, a potential photocatalytic degradation mechanism by the composites was proposed. More >

  • Open Access

    ARTICLE

    Manufacturing a Biodegradable Container for Planting Plants Based on an Innovative Wood-Polymer Composite

    Ksenia Anikeeva*, Ruslan Safin

    Journal of Renewable Materials, Vol.13, No.11, pp. 2235-2252, 2025, DOI:10.32604/jrm.2025.02025-0128 - 24 November 2025

    Abstract The use of wood-polymer composites (WPC) based on a polymer matrix and wood filler is a modern, environmentally friendly direction in material science. However, untreated wood filler exhibits poor adhesion to hydrophobic polymers due to its hydrophilic lignocellulose fibers. To address this, ozone treatment is employed to enhance compatibility, reduce water absorption, and regulate biodegradation rates. This study investigates the hypothesis that ozone modification of wood filler improves adhesion to thermoplastic starch, thereby enhancing the physico-mechanical properties and controlled biodegradation of WPCs under compost conditions. A comprehensive analysis was conducted on composites containing untreated and… More >

  • Open Access

    ARTICLE

    Sustainable Egg Packaging Waste Biocomposites Derived from Recycled Wood Fibers and Fungal Filaments

    Ilze Irbe1,*, Laura Andze1, Inese Filipova1,2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2139-2154, 2025, DOI:10.32604/jrm.2025.02025-0107 - 24 November 2025

    Abstract Growing environmental concerns and the need for sustainable alternatives to synthetic materials have led to increased interest in bio-based composites. This study investigates the development and characterization of sustainable egg packaging waste (EPW) biocomposites derived from recycled wood fibers and fungal mycelium filaments as a natural binder. Three formulations were prepared using EPW as the primary substrate, with and without the addition of hemp shives and sawdust as co-substrates. The composites were evaluated for granulometry, density, mechanical strength, hygroscopic behavior, thermal conductivity, and fire performance using cone calorimetry. Biocomposites, composed exclusively of egg packaging waste,… More >

  • Open Access

    PROCEEDINGS

    Simulation of Tensile Progressive Damage in Thick Ply-Drop Composites with Open Holes

    Zhaoqi Li, Xuan Liu, Hengkong Zhao, Zhen Zhang*, Yan Li

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.012239

    Abstract The growing use of ultra-thick composite laminates in aerospace structures demands a deeper understanding of their unique damage mechanisms under tensile loading, which differ significantly from those of thin laminates. This study introduces a novel 3D progressive damage model combining solid elements, the LaRC05 3D failure criterion (enhanced with through-thickness in-situ strengthening effects), and a mixed-mode cohesive zone model (CZM) to predict interlaminar delamination. The model captures the interaction between in-plane damage and through-thickness failure modes in open-hole ultra-thick composites, and addresses stress redistribution, localized buckling, delamination migration, and in-situ strength enhancement. Mesh sensitivity analysis… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Investigation on the Nonlinear Deformation of Flax Fibre Reinforced Composites Based on the Evolution of Microstructures

    Qian Li*, Jiali Zhou, Yan Li*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.012234

    Abstract Plant fibres are emerging as sustainable composite reinforcements. Compared to synthetic fibres, the hierarchical and twisted structure of plant fibres may produce microfibril angle (MFA) reorientation and untwisting time-varying behaviors after loading and consequently decide the mechanical response of plant fibre reinforced composites (PFRCs) in macro-scale. Existing theories, assuming homogeneous fibres, cannot accurately describe the multi-scale coupling nonlinear deformations of PFRCs. Based on this, a multi-scale analysis method on the nonlinear tensile responses of flax fibre reinforced composites (FFRCs) was proposed, focusing on the effect of the evolution of MFA in micro-scale and twist angle… More >

  • Open Access

    ARTICLE

    Hybrid Taguchi and Machine Learning Framework for Optimizing and Predicting Mechanical Properties of Polyurethane/Nanodiamond Nanocomposites

    Markapudi Bhanu Prasad1, Borhen Louhichi2, Santosh Kumar Sahu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 483-519, 2025, DOI:10.32604/cmes.2025.069395 - 30 October 2025

    Abstract This study investigates the mechanical behavior of polyurethane (PU) nanocomposites reinforced with nanodiamonds (NDs) and proposes an integrated optimization–prediction framework that combines the Taguchi method with machine learning (ML). The Taguchi design of experiments (DOE), based on an L9 orthogonal array, was applied to investigate the influence of composite type (pure PU, 0.1 wt.% ND, 0.5 wt.% ND), temperature (145°C–165°C), screw speed (50–70 rpm), and pressure (40–60 bar). The mechanical tests included tensile, hardness, and modulus measurements, performed under varying process parameters. Results showed that the addition of 0.5 wt.% ND substantially improved PU performance,… More >

  • Open Access

    PROCEEDINGS

    3D Printing of Complex Micro-Macrostructure Composites with Enhanced Mechanical Properties

    Lizhi Guan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.012356

    Abstract Complex hierarchical structure in nature with remarkable performances of such as lightweight, high stiffness and strength, and so on, has inspired researchers designing and fabricating aligned structures for reinforced composites. Conventional techniques like freeze-casting, self-assembly, wet-spinning, shear force, electric, and magnetic field have been demonstrated to achieve excellent reinforced structures. Still, they are limited to microstructure control and small-sized samples. While 3D printing techniques enable to achieve a large diversity of dimensions, multimaterial and multifunctional 3D structures. Particularly, recent 3D printing combined with external force e.g., shear force, magnetic and electrical field has been employed… More >

  • Open Access

    PROCEEDINGS

    Continuous CFRP Composites for Multifunctional Acoustic and Mechanical Metamaterials

    Zhenyu Li1, Hongze Li2, Jinshui Yang2, Hong Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.010548

    Abstract The urgent need to achieve "carbon neutrality" drives the development of innovative porous structures that integrate both acoustic and mechanical properties, aimed at reducing energy consumption. However, enhancing these functionalities often results in increased structural weight, which can restrict their application in scenarios where weight is a critical factor. In response to this challenge, we present a groundbreaking structural design that combines carbon fiber reinforced polymer (CFRP) composites with mechanical and acoustic metamaterials for the first time. This novel construction is characterized by its lightweight nature while delivering exceptional mechanical strength and acoustic performance.
    The experimental… More >

  • Open Access

    PROCEEDINGS

    Influence of Resin Matrix Rigidity on the Ballistic Performance of PBO and Aramid Fiber Reinforced Composites

    Jia Liu, Yuwu Zhang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011553

    Abstract The rigidity of the resin matrix is a critical factor affecting the impact resistance of composites [1]. However, the intrinsic relationship between resin matrix rigidity and ballistic performance remains insufficiently understood. To reveal the influence mechanisms of resin matrix rigidity on ballistic performance, this study compares the ballistic limits of PBO-140, PBO-200, Aramid III, and Aramid II fiber reinforced composites with resin matrices of different rigidities (epoxy resin, PX90, and PX30) through ballistic impact tests. The experimental results show that, the ballistic limit of composites with PX90 resin is higher than that of composites with… More >

Displaying 21-30 on page 3 of 461. Per Page