Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    An Enhanced Deep Learning Method for Skin Cancer Detection and Classification

    Mohamed W. Abo El-Soud1,2,*, Tarek Gaber2,3, Mohamed Tahoun2, Abdullah Alourani1

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1109-1123, 2022, DOI:10.32604/cmc.2022.028561 - 18 May 2022

    Abstract The prevalence of melanoma skin cancer has increased in recent decades. The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins. Thus, the early diagnosis of melanoma is a key factor in improving the prognosis of the disease. Deep learning makes it possible to design and develop intelligent systems that can be used in detecting and classifying skin lesions from visible-light images. Such systems can provide early and accurate diagnoses of melanoma and other types of skin diseases. This paper proposes a new method… More >

  • Open Access

    ARTICLE

    Deep Learning Convolutional Neural Network for ECG Signal Classification Aggregated Using IoT

    S. Karthiga*, A. M. Abirami

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 851-866, 2022, DOI:10.32604/csse.2022.021935 - 08 February 2022

    Abstract Much attention has been given to the Internet of Things (IoT) by citizens, industries, governments, and universities for applications like smart buildings, environmental monitoring, health care and so on. With IoT, network connectivity is facilitated between smart devices from anyplace and anytime. IoT-based health monitoring systems are gaining popularity and acceptance for continuous monitoring and detect health abnormalities from the data collected. Electrocardiographic (ECG) signals are widely used for heart diseases detection. A novel method has been proposed in this work for ECG monitoring using IoT techniques. In this work, a two-stage approach is employed.… More >

  • Open Access

    ARTICLE

    Improving Date Fruit Classification Using CycleGAN-Generated Dataset

    Dina M. Ibrahim1,2,*, Nada M. Elshennawy2

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 331-348, 2022, DOI:10.32604/cmes.2022.016419 - 24 January 2022

    Abstract Dates are an important part of human nutrition. Dates are high in essential nutrients and provide a number of health benefits. Date fruits are also known to protect against a number of diseases, including cancer and heart disease. Date fruits have several sizes, colors, tastes, and values. There are a lot of challenges facing the date producers. One of the most significant challenges is the classification and sorting of dates. But there is no public dataset for date fruits, which is a major limitation in order to improve the performance of convolutional neural networks (CNN)… More >

  • Open Access

    ARTICLE

    Deep Neural Networks for Gun Detection in Public Surveillance

    Erssa Arif1,*, Syed Khuram Shahzad2, Rehman Mustafa1, Muhammad Arfan Jaffar3, Muhammad Waseem Iqbal4

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 909-922, 2022, DOI:10.32604/iasc.2022.021061 - 17 November 2021

    Abstract The conventional surveillance and control system of Closed-Circuit Television (CCTV) cameras require human resource supervision. Almost all the criminal activities take place using weapons mostly handheld gun, revolver, or pistol. Automatic gun detection is a vital requirement now-a-days. The use of real-time object detection system for the improvement of surveillance is a promising application of Convolutional Neural Networks (CNN). We are concerned about the real-time detection of weapons for the surveillance cameras, so we focused on the implementation and comparison of faster approaches such as Region (R-CNN) and Region Fully Convolutional Networks (R-FCN) with feature… More >

  • Open Access

    ARTICLE

    Defect Detection in Printed Circuit Boards with Pre-Trained Feature Extraction Methodology with Convolution Neural Networks

    Mohammed A. Alghassab*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 637-652, 2022, DOI:10.32604/cmc.2022.019527 - 07 September 2021

    Abstract Printed Circuit Boards (PCBs) are very important for proper functioning of any electronic device. PCBs are installed in almost all the electronic device and their functionality is dependent on the perfection of PCBs. If PCBs do not function properly then the whole electric machine might fail. So, keeping this in mind researchers are working in this field to develop error free PCBs. Initially these PCBs were examined by the human beings manually, but the human error did not give good results as sometime defected PCBs were categorized as non-defective. So, researchers and experts transformed this… More >

  • Open Access

    ARTICLE

    Plant Disease Classification Using Deep Bilinear CNN

    D. Srinivasa Rao1, Ramesh Babu Ch2, V. Sravan Kiran1, N. Rajasekhar3,*, Kalyanapu Srinivas4, P. Shilhora Akshay1, G. Sai Mohan1, B. Lalith Bharadwaj1

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 161-176, 2022, DOI:10.32604/iasc.2022.017706 - 03 September 2021

    Abstract

    Plant diseases have become a major threat in farming and provision of food. Various plant diseases have affected the natural growth of the plants and the infected plants are the leading factors for loss of crop production. The manual detection and identification of the plant diseases require a careful and observative examination through expertise. To overcome manual testing procedures an automated identification and detection can be implied which provides faster, scalable and precisive solutions. In this research, the contributions of our work are threefold. Firstly, a bi-linear convolution neural network (Bi-CNNs) for plant leaf disease

    More >

  • Open Access

    ARTICLE

    Intelligent Multiclass Skin Cancer Detection Using Convolution Neural Networks

    Reham Alabduljabbar*, Hala Alshamlan

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 831-847, 2021, DOI:10.32604/cmc.2021.018402 - 04 June 2021

    Abstract The worldwide mortality rate due to cancer is second only to cardiovascular diseases. The discovery of image processing, latest artificial intelligence techniques, and upcoming algorithms can be used to effectively diagnose and prognose cancer faster and reduce the mortality rate. Efficiently applying these latest techniques has increased the survival chances during recent years. The research community is making significant continuous progress in developing automated tools to assist dermatologists in decision making. The datasets used for the experimentation and analysis are ISBI 2016, ISBI 2017, and HAM 10000. In this work pertained models are used to… More >

  • Open Access

    ARTICLE

    Detecting Driver Distraction Using Deep-Learning Approach

    Khalid A. AlShalfan1, Mohammed Zakariah2,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 689-704, 2021, DOI:10.32604/cmc.2021.015989 - 22 March 2021

    Abstract Currently, distracted driving is among the most important causes of traffic accidents. Consequently, intelligent vehicle driving systems have become increasingly important. Recently, interest in driver-assistance systems that detect driver actions and help them drive safely has increased. In these studies, although some distinct data types, such as the physical conditions of the driver, audio and visual features, and vehicle information, are used, the primary data source is images of the driver that include the face, arms, and hands taken with a camera inside the car. In this study, an architecture based on a convolution neural More >

  • Open Access

    ARTICLE

    Fractional Rényi Entropy Image Enhancement for Deep Segmentation of Kidney MRI

    Hamid A. Jalab1, Ala’a R. Al-Shamasneh1, Hadil Shaiba2, Rabha W. Ibrahim3,4,*, Dumitru Baleanu5,6,7

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2061-2075, 2021, DOI:10.32604/cmc.2021.015170 - 05 February 2021

    Abstract Recently, many rapid developments in digital medical imaging have made further contributions to health care systems. The segmentation of regions of interest in medical images plays a vital role in assisting doctors with their medical diagnoses. Many factors like image contrast and quality affect the result of image segmentation. Due to that, image contrast remains a challenging problem for image segmentation. This study presents a new image enhancement model based on fractional Rényi entropy for the segmentation of kidney MRI scans. The proposed work consists of two stages: enhancement by fractional Rényi entropy, and MRI… More >

  • Open Access

    ARTICLE

    Automatic Detection of COVID-19 Using Chest X-Ray Images and Modified ResNet18-Based Convolution Neural Networks

    Ruaa A. Al-Falluji1,*, Zainab Dalaf Katheeth2, Bashar Alathari2

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1301-1313, 2021, DOI:10.32604/cmc.2020.013232 - 26 November 2020

    Abstract The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019 (COVID-19). The usage of sophisticated artificial intelligence technology (AI) and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages. In this research, the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia, reported COVID-19 disease, and normal cases. The goal of the study is to analyze the achievements for medical image recognition… More >

Displaying 11-20 on page 2 of 25. Per Page