Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (104)
  • Open Access

    ARTICLE

    Optimized Deep Learning Approach for Efficient Diabetic Retinopathy Classification Combining VGG16-CNN

    Heba M. El-Hoseny1,*, Heba F. Elsepae2, Wael A. Mohamed2, Ayman S. Selmy2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1855-1872, 2023, DOI:10.32604/cmc.2023.042107

    Abstract Diabetic retinopathy is a critical eye condition that, if not treated, can lead to vision loss. Traditional methods of diagnosing and treating the disease are time-consuming and expensive. However, machine learning and deep transfer learning (DTL) techniques have shown promise in medical applications, including detecting, classifying, and segmenting diabetic retinopathy. These advanced techniques offer higher accuracy and performance. Computer-Aided Diagnosis (CAD) is crucial in speeding up classification and providing accurate disease diagnoses. Overall, these technological advancements hold great potential for improving the management of diabetic retinopathy. The study’s objective was to differentiate between different classes of diabetes and verify the… More >

  • Open Access

    ARTICLE

    Prediction of Porous Media Fluid Flow with Spatial Heterogeneity Using Criss-Cross Physics-Informed Convolutional Neural Networks

    Jiangxia Han1,2, Liang Xue1,2,*, Ying Jia3, Mpoki Sam Mwasamwasa1,2, Felix Nanguka4, Charles Sangweni5, Hailong Liu3, Qian Li3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1323-1340, 2024, DOI:10.32604/cmes.2023.031093

    Abstract Recent advances in deep neural networks have shed new light on physics, engineering, and scientific computing. Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots. The physics-informed neural network (PINN) is currently the most general framework, which is more popular due to the convenience of constructing NNs and excellent generalization ability. The automatic differentiation (AD)-based PINN model is suitable for the homogeneous scientific problem; however, it is unclear how AD can enforce flux continuity across boundaries between cells of different properties where spatial heterogeneity is represented by grid cells with different physical properties. In this work,… More >

  • Open Access

    ARTICLE

    Fast and Accurate Detection of Masked Faces Using CNNs and LBPs

    Sarah M. Alhammad1, Doaa Sami Khafaga1,*, Aya Y. Hamed2, Osama El-Koumy3, Ehab R. Mohamed3, Khalid M. Hosny3

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2939-2952, 2023, DOI:10.32604/csse.2023.041011

    Abstract Face mask detection has several applications, including real-time surveillance, biometrics, etc. Identifying face masks is also helpful for crowd control and ensuring people wear them publicly. With monitoring personnel, it is impossible to ensure that people wear face masks; automated systems are a much superior option for face mask detection and monitoring. This paper introduces a simple and efficient approach for masked face detection. The architecture of the proposed approach is very straightforward; it combines deep learning and local binary patterns to extract features and classify them as masked or unmasked. The proposed system requires hardware with minimal power consumption… More >

  • Open Access

    ARTICLE

    Enhanced 3D Point Cloud Reconstruction for Light Field Microscopy Using U-Net-Based Convolutional Neural Networks

    Shariar Md Imtiaz1, Ki-Chul Kwon1, F. M. Fahmid Hossain1, Md. Biddut Hossain1, Rupali Kiran Shinde1, Sang-Keun Gil2, Nam Kim1,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2921-2937, 2023, DOI:10.32604/csse.2023.040205

    Abstract This article describes a novel approach for enhancing the three-dimensional (3D) point cloud reconstruction for light field microscopy (LFM) using U-net architecture-based fully convolutional neural network (CNN). Since the directional view of the LFM is limited, noise and artifacts make it difficult to reconstruct the exact shape of 3D point clouds. The existing methods suffer from these problems due to the self-occlusion of the model. This manuscript proposes a deep fusion learning (DL) method that combines a 3D CNN with a U-Net-based model as a feature extractor. The sub-aperture images obtained from the light field microscopy are aligned to form… More >

  • Open Access

    REVIEW

    Action Recognition and Detection Based on Deep Learning: A Comprehensive Summary

    Yong Li1,4, Qiming Liang2,*, Bo Gan3, Xiaolong Cui4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1-23, 2023, DOI:10.32604/cmc.2023.042494

    Abstract Action recognition and detection is an important research topic in computer vision, which can be divided into action recognition and action detection. At present, the distinction between action recognition and action detection is not clear, and the relevant reviews are not comprehensive. Thus, this paper summarized the action recognition and detection methods and datasets based on deep learning to accurately present the research status in this field. Firstly, according to the way that temporal and spatial features are extracted from the model, the commonly used models of action recognition are divided into the two stream models, the temporal models, the… More >

  • Open Access

    ARTICLE

    A Double-Branch Xception Architecture for Acute Hemorrhage Detection and Subtype Classification

    Muhammad Naeem Akram1, Muhammad Usman Yaseen1, Muhammad Waqar1, Muhammad Imran1,*, Aftab Hussain2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3727-3744, 2023, DOI:10.32604/cmc.2023.041855

    Abstract This study presents a deep learning model for efficient intracranial hemorrhage (ICH) detection and subtype classification on non-contrast head computed tomography (CT) images. ICH refers to bleeding in the skull, leading to the most critical life-threatening health condition requiring rapid and accurate diagnosis. It is classified as intra-axial hemorrhage (intraventricular, intraparenchymal) and extra-axial hemorrhage (subdural, epidural, subarachnoid) based on the bleeding location inside the skull. Many computer-aided diagnoses (CAD)-based schemes have been proposed for ICH detection and classification at both slice and scan levels. However, these approaches perform only binary classification and suffer from a large number of parameters, which… More >

  • Open Access

    ARTICLE

    Improved Shark Smell Optimization Algorithm for Human Action Recognition

    Inzamam Mashood Nasir1,*, Mudassar Raza1, Jamal Hussain Shah1, Muhammad Attique Khan2, Yun-Cheol Nam3, Yunyoung Nam4,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2667-2684, 2023, DOI:10.32604/cmc.2023.035214

    Abstract Human Action Recognition (HAR) in uncontrolled environments targets to recognition of different actions from a video. An effective HAR model can be employed for an application like human-computer interaction, health care, person tracking, and video surveillance. Machine Learning (ML) approaches, specifically, Convolutional Neural Network (CNN) models had been widely used and achieved impressive results through feature fusion. The accuracy and effectiveness of these models continue to be the biggest challenge in this field. In this article, a novel feature optimization algorithm, called improved Shark Smell Optimization (iSSO) is proposed to reduce the redundancy of extracted features. This proposed technique is… More >

  • Open Access

    EDITORIAL

    Grad-CAM: Understanding AI Models

    Shuihua Wang1,2, Yudong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1321-1324, 2023, DOI:10.32604/cmc.2023.041419

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Hyper-Tuned Convolutional Neural Networks for Authorship Verification in Digital Forensic Investigations

    Asif Rahim1, Yanru Zhong2, Tariq Ahmad3,*, Sadique Ahmad4,*, Mohammed A. ElAffendi4

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1947-1976, 2023, DOI:10.32604/cmc.2023.039340

    Abstract Authorship verification is a crucial task in digital forensic investigations, where it is often necessary to determine whether a specific individual wrote a particular piece of text. Convolutional Neural Networks (CNNs) have shown promise in solving this problem, but their performance highly depends on the choice of hyperparameters. In this paper, we explore the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification. We conduct experiments using a Hyper Tuned CNN model with three popular optimization algorithms: Adaptive Moment Estimation (ADAM), Stochastic Gradient Descent (SGD), and Root Mean Squared Propagation (RMSPROP). The model is trained and… More >

  • Open Access

    ARTICLE

    TC-Fuse: A Transformers Fusing CNNs Network for Medical Image Segmentation

    Peng Geng1, Ji Lu1, Ying Zhang2,*, Simin Ma1, Zhanzhong Tang2, Jianhua Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 2001-2023, 2023, DOI:10.32604/cmes.2023.027127

    Abstract In medical image segmentation task, convolutional neural networks (CNNs) are difficult to capture long-range dependencies, but transformers can model the long-range dependencies effectively. However, transformers have a flexible structure and seldom assume the structural bias of input data, so it is difficult for transformers to learn positional encoding of the medical images when using fewer images for training. To solve these problems, a dual branch structure is proposed. In one branch, Mix-Feed-Forward Network (Mix-FFN) and axial attention are adopted to capture long-range dependencies and keep the translation invariance of the model. Mix-FFN whose depth-wise convolutions can provide position information is… More >

Displaying 1-10 on page 1 of 104. Per Page