Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (166)
  • Open Access

    ARTICLE

    CGB-Net: A Novel Convolutional Gated Bidirectional Network for Enhanced Sleep Posture Classification

    Hoang-Dieu Vu1,2, Duc-Nghia Tran3, Quang-Tu Pham1, Ngoc-Linh Nguyen4,*, Duc-Tan Tran1,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2819-2835, 2025, DOI:10.32604/cmc.2025.068355 - 23 September 2025

    Abstract This study presents CGB-Net, a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer, with direct applicability to gastroesophageal reflux disease (GERD) monitoring. Unlike conventional approaches limited to four basic postures, CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions, providing enhanced resolution for personalized health assessment. The architecture introduces a unique integration of three complementary components: 1D Convolutional Neural Networks (1D-CNN) for efficient local spatial feature extraction, Gated Recurrent Units (GRU) to capture short-term temporal dependencies with reduced computational complexity, and Bidirectional Long Short-Term Memory… More >

  • Open Access

    ARTICLE

    Fatigue Life Prediction of Composite Materials Based on BO-CNN-BiLSTM Model and Ultrasonic Guided Waves

    Mengke Ding1, Jun Li1,2,*, Dongyue Gao1,*, Guotai Zhou2, Borui Wang1, Zhanjun Wu1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 597-612, 2025, DOI:10.32604/cmc.2025.067907 - 29 August 2025

    Abstract Throughout the composite structure’s lifespan, it is subject to a range of environmental factors, including loads, vibrations, and conditions involving heat and humidity. These factors have the potential to compromise the integrity of the structure. The estimation of the fatigue life of composite materials is imperative for ensuring the structural integrity of these materials. In this study, a methodology is proposed for predicting the fatigue life of composites that integrates ultrasonic guided waves and machine learning modeling. The method first screens the ultrasonic guided wave signal features that are significantly affected by fatigue damage. Subsequently,… More >

  • Open Access

    ARTICLE

    A Quality of Service Analysis of FPGA-Accelerated Conv2D Architectures for Brain Tumor Multi-Classification

    Ayoub Mhaouch1,*, Wafa Gtifa2, Turke Althobaiti3, Hamzah Faraj4, Mohsen Machhout1

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5637-5663, 2025, DOI:10.32604/cmc.2025.065525 - 30 July 2025

    Abstract In medical imaging, accurate brain tumor classification in medical imaging requires real-time processing and efficient computation, making hardware acceleration essential. Field Programmable Gate Arrays (FPGAs) offer parallelism and reconfigurability, making them well-suited for such tasks. In this study, we propose a hardware-accelerated Convolutional Neural Network (CNN) for brain cancer classification, implemented on the PYNQ-Z2 FPGA. Our approach optimizes the first Conv2D layer using different numerical representations: 8-bit fixed-point (INT8), 16-bit fixed-point (FP16), and 32-bit fixed-point (FP32), while the remaining layers run on an ARM Cortex-A9 processor. Experimental results demonstrate that FPGA acceleration significantly outperforms the… More >

  • Open Access

    ARTICLE

    Real-Time Larval Stage Classification of Black Soldier Fly Using an Enhanced YOLO11-DSConv Model

    An-Chao Tsai*, Chayanon Pookunngern

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2455-2471, 2025, DOI:10.32604/cmc.2025.067413 - 03 July 2025

    Abstract Food waste presents a major global environmental challenge, contributing to resource depletion, greenhouse gas emissions, and climate change. Black Soldier Fly Larvae (BSFL) offer an eco-friendly solution due to their exceptional ability to decompose organic matter. However, accurately identifying larval instars is critical for optimizing feeding efficiency and downstream applications, as different stages exhibit only subtle visual differences. This study proposes a real-time mobile application for automatic classification of BSFL larval stages. The system distinguishes between early instars (Stages 1–4), suitable for food waste processing and animal feed, and late instars (Stages 5–6), optimal for… More >

  • Open Access

    ARTICLE

    Enhancing Android Malware Detection with XGBoost and Convolutional Neural Networks

    Atif Raza Zaidi1, Tahir Abbas1,*, Ali Daud2,*, Omar Alghushairy3, Hussain Dawood4, Nadeem Sarwar5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3281-3304, 2025, DOI:10.32604/cmc.2025.063646 - 03 July 2025

    Abstract Safeguarding against malware requires precise machine-learning algorithms to classify harmful apps. The Drebin dataset of 15,036 samples and 215 features yielded significant and reliable results for two hybrid models, CNN + XGBoost and KNN + XGBoost. To address the class imbalance issue, SMOTE (Synthetic Minority Over-sampling Technique) was used to preprocess the dataset, creating synthetic samples of the minority class (malware) to balance the training set. XGBoost was then used to choose the most essential features for separating malware from benign programs. The models were trained and tested using 6-fold cross-validation, measuring accuracy, precision, recall,… More >

  • Open Access

    ARTICLE

    Effects of Normalised SSIM Loss on Super-Resolution Tasks

    Adéla Hamplová*, Tomáš Novák, Miroslav Žáček, Jiří Brožek

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3329-3349, 2025, DOI:10.32604/cmes.2025.066025 - 30 June 2025

    Abstract This study proposes a new component of the composite loss function minimised during training of the Super-Resolution (SR) algorithms—the normalised structural similarity index loss , which has the potential to improve the natural appearance of reconstructed images. Deep learning-based super-resolution (SR) algorithms reconstruct high-resolution images from low-resolution inputs, offering a practical means to enhance image quality without requiring superior imaging hardware, which is particularly important in medical applications where diagnostic accuracy is critical. Although recent SR methods employing convolutional and generative adversarial networks achieve high pixel fidelity, visual artefacts may persist, making the design of… More >

  • Open Access

    ARTICLE

    Attention Driven YOLOv5 Network for Enhanced Landslide Detection Using Satellite Imagery of Complex Terrain

    Naveen Chandra1, Himadri Vaidya2,3, Suraj Sawant4, Shilpa Gite5,6, Biswajeet Pradhan7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3351-3375, 2025, DOI:10.32604/cmes.2025.064395 - 30 June 2025

    Abstract Landslide hazard detection is a prevalent problem in remote sensing studies, particularly with the technological advancement of computer vision. With the continuous and exceptional growth of the computational environment, the manual and partially automated procedure of landslide detection from remotely sensed images has shifted toward automatic methods with deep learning. Furthermore, attention models, driven by human visual procedures, have become vital in natural hazard-related studies. Hence, this paper proposes an enhanced YOLOv5 (You Only Look Once version 5) network for improved satellite-based landslide detection, embedded with two popular attention modules: CBAM (Convolutional Block Attention Module) More >

  • Open Access

    ARTICLE

    A Deep Learning Approach to Classification of Diseases in Date Palm Leaves

    Sameera V Mohd Sagheer1, Orwel P V2, P M Ameer3, Amal BaQais4, Shaeen Kalathil5,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1329-1349, 2025, DOI:10.32604/cmc.2025.063961 - 09 June 2025

    Abstract The precise identification of date palm tree diseases is essential for maintaining agricultural productivity and promoting sustainable farming methods. Conventional approaches rely on visual examination by experts to detect infected palm leaves, which is time intensive and susceptible to mistakes. This study proposes an automated leaf classification system that uses deep learning algorithms to identify and categorize diseases in date palm tree leaves with high precision and dependability. The system leverages pretrained convolutional neural network architectures (InceptionV3, DenseNet, and MobileNet) to extract and examine leaf characteristics for classification purposes. A publicly accessible dataset comprising multiple… More >

  • Open Access

    ARTICLE

    Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model

    Umit Cigdem Turhal1, Yasemin Onal1,*, Kutalmis Turhal2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2307-2332, 2025, DOI:10.32604/cmes.2025.064269 - 30 May 2025

    Abstract The reliability and efficiency of photovoltaic (PV) systems are essential for sustainable energy production, requiring accurate fault detection to minimize energy losses. This study proposes a hybrid model integrating Neighborhood Components Analysis (NCA) with a Convolutional Neural Network (CNN) to improve fault detection and diagnosis. Unlike Principal Component Analysis (PCA), which may compromise class relationships during feature extraction, NCA preserves these relationships, enhancing classification performance. The hybrid model combines NCA with CNN, a fundamental deep learning architecture, to enhance fault detection and diagnosis capabilities. The performance of the proposed NCA-CNN model was evaluated against other More > Graphic Abstract

    Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model

  • Open Access

    ARTICLE

    An Advanced Medical Diagnosis of Breast Cancer Histopathology Using Convolutional Neural Networks

    Ahmed Ben Atitallah1,*, Jannet Kamoun2,3, Meshari D. Alanazi1, Turki M. Alanazi4, Mohammed Albekairi1, Khaled Kaaniche1

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5761-5779, 2025, DOI:10.32604/cmc.2025.063634 - 19 May 2025

    Abstract Breast Cancer (BC) remains a leading malignancy among women, resulting in high mortality rates. Early and accurate detection is crucial for improving patient outcomes. Traditional diagnostic tools, while effective, have limitations that reduce their accessibility and accuracy. This study investigates the use of Convolutional Neural Networks (CNNs) to enhance the diagnostic process of BC histopathology. Utilizing the BreakHis dataset, which contains thousands of histopathological images, we developed a CNN model designed to improve the speed and accuracy of image analysis. Our CNN architecture was designed with multiple convolutional layers, max-pooling layers, and a fully connected… More >

Displaying 11-20 on page 2 of 166. Per Page