Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Tactile Response Characterization of a Dynamic System Using Craig-Bampton Method

    S. Pradeepkumar*, P. Nagaraj

    Sound & Vibration, Vol.56, No.3, pp. 221-233, 2022, DOI:10.32604/sv.2022.014889

    Abstract Vibrational characteristics in small horizontal axis wind turbine system are presented in this study with a system concept called tactile response and substructuring. The main focus is on managing the dynamic properties like vibration, noise, and harshness that occur during the operational mode. Tactile response is defined as the response of subsystem which is induced when a human body touches a vibrating system. Sub structuring is a computational method used to reduce the dynamic behavior of a large complex system with a smaller number of degrees of freedom without disturbing the mesh size of the model. Sub structuring has the… More >

  • Open Access

    ARTICLE

    Eigenvalue Analysis of Thin Plate with Complicated Shapes By a Novel Infinite Element Method

    Deshin Liu1, Yuwei Chen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 273-292, 2019, DOI:10.32604/cmes.2019.06364

    Abstract A novel infinite element method (IEM) is presented for solving plate vibration problems in this paper. In the proposed IEM, the substructure domain is partitioned into multiple layers of geometrically similar finite elements which use only the data of the boundary nodes. A convergence criterion based on the trace of the mass matrix is used to determine the number of layers in the IE model partitioning process. Furthermore, in implementing the Craig-Bampton (CB) reduction method, the inversion of the global stiffness matrix is calculated using only the stiffness matrix of the first element layer. The validity and performance of the… More >

Displaying 1-10 on page 1 of 2. Per Page