Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Wave Propagation in Piezoelectric Rods with Rectangular Cross Sections

    Xiaoming Zhang1, Xingxin Xu1,2, Yuqing Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.1, pp. 1-17, 2014, DOI:10.3970/cmes.2014.100.001

    Abstract Orthogonal polynomial approach has been used to deal with the wave propagation in structures that have finite dimension in only one direction, such as horizontally infinite flat plates, axially infinite hollow cylinders. In order to solve wave propagation in two-dimensional piezoelectric rod with rectangular cross section, i.e. the piezoelectric plate with finite dimensions in two directions, an extended orthogonal polynomial approach is proposed in this paper. For validation and illustration purposes, the proposed approach is applied to solving the wave propagation in a square steel rod. The results obtained are in good agreement with the results from the semi-analytical finite… More >

  • Open Access

    ARTICLE

    A Dual BEM Genetic Algorithm Scheme for the Identification of Polarization Curves of Buried Slender Structures

    L.A. de Lacerda1, J. M. da Silva1

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.3, pp. 153-160, 2006, DOI:10.3970/cmes.2006.014.153

    Abstract A two-dimensional boundary element formulation is presented and coupled to a genetic algorithm to identify polarization curves of buried slender structures. The dual boundary element method is implemented to model the cathodic protection of the metallic body and the genetic algorithm is employed to deal with the inverse problem of determining the non-linear polarization curve, which describes the relation between current density and electrochemical potential at the soil metal interface. In this work, this non-linear relation resulting from anodic and cathodic reactions is represented by a classical seven parameters expression. Stratified soil resistivity is modeled with a piece-wise homogeneous domain.… More >

  • Open Access

    ARTICLE

    Fast Identification of Poroelastic Parameters from Indentation Tests

    M.Galli , M.L.Oyen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.3, pp. 241-270, 2009, DOI:10.3970/cmes.2009.048.241

    Abstract A novel approach is presented for the identification of constitutive parameters of linear poroelastic materials from indentation tests. Load-controlled spherical indentation with a ramp-hold creep profile is considered. The identification approach is based on the normalization of the time-displacement indentation response, in analogy to the well-known one-dimensional consolidation problem. The identification algorithm consists of two nested optimization routines, one in the time-displacement domain and the other in a normalized domain. The procedure is validated by identifying poroelastic parameters from the displacement-time outputs of finite element simulations; the new identification scheme proves both quantitatively reliable and fast. The procedure is also… More >

  • Open Access

    ARTICLE

    Cased Hole Flexural Modes in Anisotropic Formations

    Ping’en Li1, Xianyue Su1,2, Youquan Yin1

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 93-102, 2007, DOI:10.3970/cmc.2007.006.093

    Abstract Based on the perturbation method, for flexural wave in cased hole in anisotropic formation, the alteration in the phase velocity caused by the differences in elastic constants between anisotropic formation of interest and a reference, or unperturbed isotropic formation is obtained. Assuming the cased hole is well bonded, the Thomson-Haskell transfer matrix method is applied to calculate the dispersion relation of flexural wave in cased hole in unperturbed isotropic formation. Both the cases of a fast and slow formation are considered where the symmetry axis of a transversely isotropic (TI) formation makes an angle with the cased hole axis, the… More >

  • Open Access

    ARTICLE

    An Improved Integration for Trimmed Geometries in Isogeometric Analysis

    Jinlan Xu1, Ningning Sun1, Laixin Shu1, Timon Rabczuk2, Gang Xu1,*

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 615-632, 2019, DOI:10.32604/cmc.2019.04464

    Abstract Trimming techniques are efficient ways to generate complex geometries in Computer-Aided Design (CAD). In this paper, an improved integration for trimmed geometries in isogeometric analysis (IGA) is proposed. The proposed method can improve the accuracy of the approximation and the condition number of the stiffness matrix. In addition, comparing to the traditional approaches, the trimming techniques can reduce the number of the integration elements with much fewer integration points, which improves the computational efficiency significantly. Several examples are illustrated to show the effectiveness of the proposed approach. More >

  • Open Access

    ARTICLE

    Efficient Construction of B-Spline Curves with Minimal Internal Energy

    Gang Xu1,*, Yufan Zhu1, Lishan Deng1, Guozhao Wang2, Bojian Li1, Kin-chuen Hui3

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 879-892, 2019, DOI:10.32604/cmc.2019.03752

    Abstract In this paper, we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method. The linear relations between control points are firstly derived for different energy-minimization problems, then the construction of B-spline curve with minimal internal energy can be addressed by solving a sparse linear system. The existence and uniqueness of the solution for the linear system are also proved. Experimental results show the efficiency of the proposed approach, and its application in G1 blending curve construction is also presented. More >

  • Open Access

    ARTICLE

    Some Geometric Invariants of Pseudo-Spherical Evolutes in the Hyperbolic 3-Space

    H. S. Abdel-Aziz1, M. Khalifa Saad1,2,*, A. A. Abdel-Salam1

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 389-415, 2018, DOI:10.32604/cmc.2018.02149

    Abstract In this paper, we study the pseudo-spherical evolutes of curves in three dimensional hyperbolic space. We use techniques from singularity theory to investigate the singularities of pseudo-spherical evolutes and establish some relationships between singularities of these curves and geometric invariants of curves under the action of the Lorentz group. Besides, we defray with illustration some computational examples in support our main results. More >

  • Open Access

    ARTICLE

    On Special Curves According to Darboux Frame in the Three Dimensional Lorentz Space

    H. S. Abdel-Aziz1, M. Khalifa Saad1,2,*

    CMC-Computers, Materials & Continua, Vol.54, No.3, pp. 229-249, 2018, DOI:10.3970/cmc.2018.054.229

    Abstract In the light of great importance of curves and their frames in many different branches of science, especially differential geometry as well as geometric properties and the uses in various fields, we are interested here to study a special kind of curves called Smarandache curves in Lorentz 3-space. Then, we present some characterizations for these curves and calculate their Darboux invariants. Moreover, we classify TP, TU, PU and TPU-Smarandache curves of a spacelike curve according to the causal character of the vector, curve and surface used in the study. Besides, we give some of differential geometric properties and important relations… More >

  • Open Access

    ARTICLE

    Guided Waves in Functionally Graded Rods with Rectangular Cross-Section under Initial Stress

    Xiaoming Zhang1, Jiangong Yu1,2, Min Zhang1, Dengpan Zhang1

    CMC-Computers, Materials & Continua, Vol.48, No.3, pp. 163-179, 2015, DOI:10.3970/cmc.2015.048.163

    Abstract The characteristics of the guided waves propagation in functionally graded rods with rectangular cross-section (finite width and height) under initial stress are investigated in this paper based on Biot’s theory of incremental deformation. An extended orthogonal polynomial approach is present to solve the coupled wave equations with variable coefficients. By comparisons with the available results of a rectangular aluminum rod, the validity of the present approach is illustrated. The dispersion curves and displacement profiles of various rectangular functionally graded rods are calculated to reveal the wave characteristics, and the effects of different width to height ratios and initial stress and… More >

  • Open Access

    ARTICLE

    Wave Propagation in Functionally Graded Piezoelectric-piezomagnetic Rectangular Rings

    Yuchun Duan1, Xiaoming Zhang2,3, Yuqing Wang2, Jiangong Yu2

    CMC-Computers, Materials & Continua, Vol.43, No.3, pp. 153-174, 2014, DOI:10.3970/cmc.2014.043.153

    Abstract The ring ultrasonic transducers are widely used in the ocean engineering and medical fields. This paper proposes a double orthogonal polynomial series approach to solve the wave propagation problem in a functionally graded piezoelectric-piezomagnetic (FGPP) ring with a rectangular cross-section. Through numerical comparison with the available reference results for a pure elastic homogeneous rectangular bar, the validity of the proposed approach is illustrated. The dispersion curves and displacement distributions of various FGPP rectangular bars are calculated to reveal their wave characteristics. The results can be used for the design and optimization of the ring FGPP transducers. More >

Displaying 21-30 on page 3 of 30. Per Page