Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    REVIEW

    A Survey on Sensor- and Communication-Based Issues of Autonomous UAVs

    Pavlo Mykytyn1,2,*, Marcin Brzozowski1, Zoya Dyka1,2, Peter Langendoerfer1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1019-1050, 2024, DOI:10.32604/cmes.2023.029075

    Abstract The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasing steadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader than ever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack of implemented security measures and raise new security and safety concerns. For instance, the issue of implausible or tampered UAV sensor measurements is barely addressed in the current research literature and thus, requires more attention from the research community. The goal of this… More >

  • Open Access

    ARTICLE

    Explainable Classification Model for Android Malware Analysis Using API and Permission-Based Features

    Nida Aslam1,*, Irfan Ullah Khan2, Salma Abdulrahman Bader2, Aisha Alansari3, Lama Abdullah Alaqeel2, Razan Mohammed Khormy2, Zahra Abdultawab AlKubaish2, Tariq Hussain4,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3167-3188, 2023, DOI:10.32604/cmc.2023.039721

    Abstract One of the most widely used smartphone operating systems, Android, is vulnerable to cutting-edge malware that employs sophisticated logic. Such malware attacks could lead to the execution of unauthorized acts on the victims’ devices, stealing personal information and causing hardware damage. In previous studies, machine learning (ML) has shown its efficacy in detecting malware events and classifying their types. However, attackers are continuously developing more sophisticated methods to bypass detection. Therefore, up-to-date datasets must be utilized to implement proactive models for detecting malware events in Android mobile devices. Therefore, this study employed ML algorithms to… More >

  • Open Access

    ARTICLE

    Honeypot Game Theory against DoS Attack in UAV Cyber

    Shangting Miao1, Yang Li2,*, Quan Pan2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2745-2762, 2023, DOI:10.32604/cmc.2023.037257

    Abstract A space called Unmanned Aerial Vehicle (UAV) cyber is a new environment where UAV, Ground Control Station (GCS) and business processes are integrated. Denial of service (DoS) attack is a standard network attack method, especially suitable for attacking the UAV cyber. It is a robust security risk for UAV cyber and has recently become an active research area. Game theory is typically used to simulate the existing offensive and defensive mechanisms for DoS attacks in a traditional network. In addition, the honeypot, an effective security vulnerability defense mechanism, has not been widely adopted or modeled… More >

  • Open Access

    ARTICLE

    Fusion of Feature Ranking Methods for an Effective Intrusion Detection System

    Seshu Bhavani Mallampati1, Seetha Hari2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1721-1744, 2023, DOI:10.32604/cmc.2023.040567

    Abstract Expanding internet-connected services has increased cyberattacks, many of which have grave and disastrous repercussions. An Intrusion Detection System (IDS) plays an essential role in network security since it helps to protect the network from vulnerabilities and attacks. Although extensive research was reported in IDS, detecting novel intrusions with optimal features and reducing false alarm rates are still challenging. Therefore, we developed a novel fusion-based feature importance method to reduce the high dimensional feature space, which helps to identify attacks accurately with less false alarm rate. Initially, to improve training data quality, various preprocessing techniques are… More >

  • Open Access

    ARTICLE

    An Efficient Cyber Security and Intrusion Detection System Using CRSR with PXORP-ECC and LTH-CNN

    Nouf Saeed Alotaibi*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2061-2078, 2023, DOI:10.32604/cmc.2023.039446

    Abstract Intrusion Detection System (IDS) is a network security mechanism that analyses all users’ and applications’ traffic and detects malicious activities in real-time. The existing IDS methods suffer from lower accuracy and lack the required level of security to prevent sophisticated attacks. This problem can result in the system being vulnerable to attacks, which can lead to the loss of sensitive data and potential system failure. Therefore, this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification (LTH-CNN). Here, the Correlation Coefficient based Mayfly Optimization (CC-MA) algorithm is used to extract the… More >

  • Open Access

    ARTICLE

    Intrusion Detection in the Internet of Things Using Fusion of GRU-LSTM Deep Learning Model

    Mohammad S. Al-kahtani1, Zahid Mehmood2,3,*, Tariq Sadad4, Islam Zada5, Gauhar Ali6, Mohammed ElAffendi6

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2279-2290, 2023, DOI:10.32604/iasc.2023.037673

    Abstract Cybersecurity threats are increasing rapidly as hackers use advanced techniques. As a result, cybersecurity has now a significant factor in protecting organizational limits. Intrusion detection systems (IDSs) are used in networks to flag serious issues during network management, including identifying malicious traffic, which is a challenge. It remains an open contest over how to learn features in IDS since current approaches use deep learning methods. Hybrid learning, which combines swarm intelligence and evolution, is gaining attention for further improvement against cyber threats. In this study, we employed a PSO-GA (fusion of particle swarm optimization (PSO) More >

  • Open Access

    ARTICLE

    A Model Training Method for DDoS Detection Using CTGAN under 5GC Traffic

    Yea-Sul Kim1, Ye-Eun Kim1, Hwankuk Kim2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1125-1147, 2023, DOI:10.32604/csse.2023.039550

    Abstract With the commercialization of 5th-generation mobile communications (5G) networks, a large-scale internet of things (IoT) environment is being built. Security is becoming increasingly crucial in 5G network environments due to the growing risk of various distributed denial of service (DDoS) attacks across vast IoT devices. Recently, research on automated intrusion detection using machine learning (ML) for 5G environments has been actively conducted. However, 5G traffic has insufficient data due to privacy protection problems and imbalance problems with significantly fewer attack data. If this data is used to train an ML model, it will likely suffer… More >

  • Open Access

    ARTICLE

    Concept Drift Analysis and Malware Attack Detection System Using Secure Adaptive Windowing

    Emad Alsuwat1,*, Suhare Solaiman1, Hatim Alsuwat2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3743-3759, 2023, DOI:10.32604/cmc.2023.035126

    Abstract Concept drift is a main security issue that has to be resolved since it presents a significant barrier to the deployment of machine learning (ML) models. Due to attackers’ (and/or benign equivalents’) dynamic behavior changes, testing data distribution frequently diverges from original training data over time, resulting in substantial model failures. Due to their dispersed and dynamic nature, distributed denial-of-service attacks pose a danger to cybersecurity, resulting in attacks with serious consequences for users and businesses. This paper proposes a novel design for concept drift analysis and detection of malware attacks like Distributed Denial of… More >

  • Open Access

    ARTICLE

    Detection of Phishing in Internet-of-Things Using Hybrid Deep Belief Network

    S. Ashwini*, S. Magesh Kumar

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3043-3056, 2023, DOI:10.32604/iasc.2023.034551

    Abstract Increase in the use of internet of things owned devices is one of the reasons for increased network traffic. While connecting the smart devices with publicly available network many kinds of phishing attacks are able to enter into the mobile devices and corrupt the existing system. The Phishing is the slow and resilient attack stacking techniques probe the users. The proposed model is focused on detecting phishing attacks in internet of things enabled devices through a robust algorithm called Novel Watch and Trap Algorithm (NWAT). Though Predictive mapping, Predictive Validation and Predictive analysis mechanism is… More >

  • Open Access

    ARTICLE

    Machine Learning Techniques for Detecting Phishing URL Attacks

    Diana T. Mosa1,2, Mahmoud Y. Shams3,*, Amr A. Abohany2, El-Sayed M. El-kenawy4, M. Thabet5

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1271-1290, 2023, DOI:10.32604/cmc.2023.036422

    Abstract Cyber Attacks are critical and destructive to all industry sectors. They affect social engineering by allowing unapproved access to a Personal Computer (PC) that breaks the corrupted system and threatens humans. The defense of security requires understanding the nature of Cyber Attacks, so prevention becomes easy and accurate by acquiring sufficient knowledge about various features of Cyber Attacks. Cyber-Security proposes appropriate actions that can handle and block attacks. A phishing attack is one of the cybercrimes in which users follow a link to illegal websites that will persuade them to divulge their private information. One… More >

Displaying 11-20 on page 2 of 39. Per Page