Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12,299)
  • Open Access

    ARTICLE

    A Hand Features Based Fusion Recognition Network with Enhancing Multi-Modal Correlation

    Wei Wu*, Yuan Zhang, Yunpeng Li, Chuanyang Li, Yan Hao

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 537-555, 2024, DOI:10.32604/cmes.2024.049174

    Abstract Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities. Additionally, it leverages inter-modal correlation to enhance recognition performance. Concurrently, the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features. Nevertheless, two issues persist in multi-modal feature fusion recognition: Firstly, the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities. Secondly, during modal fusion, improper weight selection diminishes the salience of crucial modal features, thereby diminishing the overall recognition performance. To address these two issues, we introduce an enhanced DenseNet multimodal recognition network… More > Graphic Abstract

    A Hand Features Based Fusion Recognition Network with Enhancing Multi-Modal Correlation

  • Open Access

    ARTICLE

    Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables

    Liang Chen1, Jingbo Zhang1, Linjie Wu1, Xingjuan Cai1,2,*, Yubin Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 363-383, 2024, DOI:10.32604/cmes.2024.049044

    Abstract The large-scale multi-objective optimization algorithm (LSMOA), based on the grouping of decision variables, is an advanced method for handling high-dimensional decision variables. However, in practical problems, the interaction among decision variables is intricate, leading to large group sizes and suboptimal optimization effects; hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables (MOEAWOD) is proposed in this paper. Initially, the decision variables are perturbed and categorized into convergence and diversity variables; subsequently, the convergence variables are subdivided into groups based on the interactions among different decision variables. If the size of a group surpasses the set… More >

  • Open Access

    ARTICLE

    Decoupling Algorithms for the Gravitational Wave Spacecraft

    Xue Wang1,2, Weizhou Zhu1,2, Zhao Cui2,3, Xingguang Qian2,3, Jinke Yang1,2, Jianjun Jia1,2,*, Yikun Wang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 325-337, 2024, DOI:10.32604/cmes.2024.048804

    Abstract The gravitational wave spacecraft is a complex multi-input multi-output dynamic system. The gravitational wave detection mission requires the spacecraft to achieve single spacecraft with two laser links and high-precision control. Establishing one spacecraft with two laser links, compared to one spacecraft with a single laser link, requires an upgraded decoupling algorithm for the link establishment. The decoupling algorithm we designed reassigns the degrees of freedom and forces in the control loop to ensure sufficient degrees of freedom for optical axis control. In addressing the distinct dynamic characteristics of different degrees of freedom, a transfer function compensation method is used in… More >

  • Open Access

    ARTICLE

    NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet

    Tao Yi1,3, Xingshu Chen1,2,*, Mingdong Yang3, Qindong Li1, Yi Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 929-955, 2024, DOI:10.32604/cmes.2024.048793

    Abstract Due to the rapid evolution of Advanced Persistent Threats (APTs) attacks, the emergence of new and rare attack samples, and even those never seen before, make it challenging for traditional rule-based detection methods to extract universal rules for effective detection. With the progress in techniques such as transfer learning and meta-learning, few-shot network attack detection has progressed. However, challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning, difficulties in capturing rich information from original flow in the case of insufficient samples, and the… More >

  • Open Access

    ARTICLE

    Application of the CatBoost Model for Stirred Reactor State Monitoring Based on Vibration Signals

    Xukai Ren1,2,*, Huanwei Yu2, Xianfeng Chen2, Yantong Tang2, Guobiao Wang1,*, Xiyong Du2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 647-663, 2024, DOI:10.32604/cmes.2024.048782

    Abstract Stirred reactors are key equipment in production, and unpredictable failures will result in significant economic losses and safety issues. Therefore, it is necessary to monitor its health state. To achieve this goal, in this study, five states of the stirred reactor were firstly preset: normal, shaft bending, blade eccentricity, bearing wear, and bolt looseness. Vibration signals along x, y and z axes were collected and analyzed in both the time domain and frequency domain. Secondly, 93 statistical features were extracted and evaluated by ReliefF, Maximal Information Coefficient (MIC) and XGBoost. The above evaluation results were then fused by D-S evidence… More >

  • Open Access

    ARTICLE

    A Fault-Tolerant Mobility-Aware Caching Method in Edge Computing

    Yong Ma1, Han Zhao2, Kunyin Guo3,*, Yunni Xia3,*, Xu Wang4, Xianhua Niu5, Dongge Zhu6, Yumin Dong7

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 907-927, 2024, DOI:10.32604/cmes.2024.048759

    Abstract Mobile Edge Computing (MEC) is a technology designed for the on-demand provisioning of computing and storage services, strategically positioned close to users. In the MEC environment, frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery, ultimately enhancing the quality of the user experience. However, due to the typical placement of edge devices and nodes at the network’s periphery, these components may face various potential fault tolerance challenges, including network instability, device failures, and resource constraints. Considering the dynamic nature of MEC, making high-quality content caching decisions for real-time mobile applications, especially… More >

  • Open Access

    ARTICLE

    A Privacy Preservation Method for Attributed Social Network Based on Negative Representation of Information

    Hao Jiang1, Yuerong Liao1, Dongdong Zhao2, Wenjian Luo3, Xingyi Zhang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1045-1075, 2024, DOI:10.32604/cmes.2024.048653

    Abstract Due to the presence of a large amount of personal sensitive information in social networks, privacy preservation issues in social networks have attracted the attention of many scholars. Inspired by the self-nonself discrimination paradigm in the biological immune system, the negative representation of information indicates features such as simplicity and efficiency, which is very suitable for preserving social network privacy. Therefore, we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks, called AttNetNRI. Specifically, a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the… More >

  • Open Access

    ARTICLE

    Finite Element Simulations of the Localized Failure and Fracture Propagation in Cohesive Materials with Friction

    Chengbao Hu1,2,3, Shilin Gong4,*, Bin Chen1,2,3, Zhongling Zong4, Xingwang Bao5, Xiaojian Ru5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 997-1015, 2024, DOI:10.32604/cmes.2024.048640

    Abstract Strain localization frequently occurs in cohesive materials with friction (e.g., composites, soils, rocks) and is widely recognized as a fundamental cause of progressive structural failure. Nonetheless, achieving high-fidelity simulation for this issue, particularly concerning strong discontinuities and tension-compression-shear behaviors within localized zones, remains significantly constrained. In response, this study introduces an integrated algorithm within the finite element framework, merging a coupled cohesive zone model (CZM) with the nonlinear augmented finite element method (N-AFEM). The coupled CZM comprehensively describes tension-compression and compression-shear failure behaviors in cohesive, frictional materials, while the N-AFEM allows nonlinear coupled intra-element discontinuities without necessitating extra nodes or… More >

  • Open Access

    ARTICLE

    Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures

    Xue-Qin Li1, Lu-Kai Song2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 665-684, 2024, DOI:10.32604/cmes.2024.048445

    Abstract Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function, leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy. In this case, by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory, a random forest (RF) model is presented to enhance the computing efficiency of reliability degree; moreover, by embedding the RF model into multilevel optimization model, an efficient RF-assisted fatigue reliability-based design optimization framework is developed. Regarding the low-cycle fatigue reliability-based design optimization of… More >

  • Open Access

    ARTICLE

    Dynamic Response of Foundations during Startup of High-Frequency Tunnel Equipment

    Dawei Ruan1, Mingwei Hu1,2,3,4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 821-844, 2024, DOI:10.32604/cmes.2024.048392

    Abstract The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale, multifunctional, and complex orientations. The vibration caused by the high-frequency units during regular operation is supported by the foundation of the units, and the magnitude of vibration and the operating frequency fluctuate in different engineering contexts, leading to variations in the dynamic response of the foundation. The high-frequency units yield significantly diverse outcomes under different startup conditions and times, resulting in failure to meet operational requirements, influencing the normal function of the tunnel, and causing harm to the foundation structure, personnel, and property in severe cases. This article… More >

Displaying 1-10 on page 1 of 12299. Per Page