Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12,373)
  • Open Access

    ARTICLE

    Development of Spectral Features for Monitoring Rice Bacterial Leaf Blight Disease Using Broad-Band Remote Sensing Systems

    Jingcheng Zhang1, Xingjian Zhou1, Dong Shen1, Qimeng Yu1, Lin Yuan2,*, Yingying Dong3

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 745-762, 2024, DOI:10.32604/phyton.2024.049734

    Abstract As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv. oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result of the disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remote sensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutions offer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapid dispersal under suitable conditions, making it difficult to track the disease at a regional scale with… More >

  • Open Access

    REVIEW

    Plant Chemical Defenses against Insect Herbivores—Using the Wild Tobacco as a Model

    Guangwei Sun1,2,#, Xuanhao Zhang3,#, Yi Liu3, Liguang Chai2, Daisong Liu2, Zhenguo Chen1,*, Shiyou Lü3,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 641-659, 2024, DOI:10.32604/phyton.2024.049285

    Abstract The Nicotiana genus, commonly known as tobacco, holds significant importance as a crucial economic crop. Confronted with an abundance of herbivorous insects that pose a substantial threat to yield, tobacco has developed a diverse and sophisticated array of mechanisms, establishing itself as a model of plant ecological defense. This review provides a concise overview of the current understanding of tobacco’s defense strategies against herbivores. Direct defenses, exemplified by its well-known tactic of secreting the alkaloid nicotine, serve as a potent toxin against a broad spectrum of herbivorous pests. Moreover, in response to herbivore attacks, tobacco enhances the discharge of volatile… More >

  • Open Access

    ARTICLE

    Profiles of the Headspace Volatile Organic and Essential Oil Compounds from the Tunisian Cardaria draba (L.) Desv. and Its Leaf and Stem Epidermal Micromorphology

    Wissal Saadellaoui1, Samiha Kahlaoui1, Kheiria Hcini1, Abir Haddada1, Noomene Sleimi2,*, Roberta Ascrizzi3, Guido Flamini3, Fethia Harzallah-Skhiri4, Sondes Stambouli-Essassi1

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 725-744, 2024, DOI:10.32604/phyton.2024.048110

    Abstract In this work, we investigated aroma volatiles emanated by dry roots, stems, leaves, flowers, and fruits of Cardaria draba (L.) Desv. growing wild in Tunisia and its aerial part essential oils (EOs) composition. A total of 37 volatile organic compounds (96.7%–98.9%) were identified; 4 esters, 4 alcohols, 7 hydrocarbons, 12 aldehydes, 5 ketones, 1 lactone, 1 organosulfur compound, 2 organonitrogen compounds, and 1 acid. The hydrocarbons form the main group, representing 49.5%–84.6% of the total detected volatiles. The main constituent was 2,2,4,6,6-pentamethylheptane (44.5%–76.2%) reaching the highest relative percentages. Forty-two compounds were determined in the two fractions of EOs, representing 98.8%… More >

  • Open Access

    ARTICLE

    Transcriptome Analysis of Inflorescence Development at the Five-Leaf Stage in Castor (Ricinus communis L.)

    Yong Zhao1,#, Yaxuan Jiang3,#, Li Wen1, Rui Luo2, Guorui Li2, Jianjun Di2, Mingda Yin2, Zhiyan Wang2, Fenglan Huang2,4,5,6,7,*, Fanjuan Meng3,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 713-723, 2024, DOI:10.32604/phyton.2024.047657

    Abstract The yield of castor is influenced by the type of inflorescence and the proportion of female flowers. However, there are few studies on the genetic mechanism involved in the development and differentiation of castor inflorescences. In this study, we performed transcriptomic analyses of three different phenotypes of inflorescences at the five-leaf stage. In comparison to the MI (complete pistil without willow leaves), 290 and 89 differentially expressed genes (DEGs) were found in the SFI (complete pistil with willow leaves) and the BI (monoecious inflorescence), respectively. Among the DEGs, 104 and 88 were upregulated in the SFI and BI, respectively, compared… More >

  • Open Access

    ARTICLE

    A Compact UHF Antenna Based on Hilbert Fractal Elements and a Serpentine Arrangement for Detecting Partial Discharge

    Xiang Lin1,*, Jian Fang1, Ming Zhang1, Kuang Yin1, Yan Tian1, Yingfei Guo2, Qianggang Wang2

    Energy Engineering, Vol.121, No.5, pp. 1127-1141, 2024, DOI:10.32604/ee.2024.046861

    Abstract Efforts to protect electric power systems from faults have commonly relied on the use of ultra-high frequency (UHF) antennas for detecting partial discharge (PD) as a common precursor to faults. However, the effectiveness of existing UHF antennas suffers from a number of challenges such as limited bandwidth, relatively large physical size, and low detection sensitivity. The present study addresses these issues by proposing a compact microstrip patch antenna with fixed dimensions of 100 mm × 100 mm × 1.6 mm. The results of computations yield an optimized antenna design consisting of 2nd-order Hilbert fractal units positioned within a four-layer serpentine… More > Graphic Abstract

    A Compact UHF Antenna Based on Hilbert Fractal Elements and a Serpentine Arrangement for Detecting Partial Discharge

  • Open Access

    ARTICLE

    Research on Scheduling Strategy of Flexible Interconnection Distribution Network Considering Distributed Photovoltaic and Hydrogen Energy Storage

    Yang Li1,2, Jianjun Zhao2, Xiaolong Yang2, He Wang1,*, Yuyan Wang1

    Energy Engineering, Vol.121, No.5, pp. 1263-1289, 2024, DOI:10.32604/ee.2024.046784

    Abstract Distributed photovoltaic (PV) is one of the important power sources for building a new power system with new energy as the main body. The rapid development of distributed PV has brought new challenges to the operation of distribution networks. In order to improve the absorption ability of large-scale distributed PV access to the distribution network, the AC/DC hybrid distribution network is constructed based on flexible interconnection technology, and a coordinated scheduling strategy model of hydrogen energy storage (HS) and distributed PV is established. Firstly, the mathematical model of distributed PV and HS system is established, and a comprehensive energy storage… More >

  • Open Access

    ARTICLE

    Weather-Driven Solar Power Forecasting Using D-Informer: Enhancing Predictions with Climate Variables

    Chenglian Ma1, Rui Han1, Zhao An2,*, Tianyu Hu2, Meizhu Jin2

    Energy Engineering, Vol.121, No.5, pp. 1245-1261, 2024, DOI:10.32604/ee.2024.046644

    Abstract Precise forecasting of solar power is crucial for the development of sustainable energy systems. Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic (PV) power generation and encounter issues such as gradient explosion or disappearance when dealing with extensive time-series data. To overcome these challenges, this research presents a cutting-edge, multi-stage forecasting method called D-Informer. This method skillfully merges the differential transformation algorithm with the Informer model, leveraging a detailed array of meteorological variables and historical PV power generation records. The D-Informer model exhibits remarkable superiority over competing models across multiple performance metrics,… More > Graphic Abstract

    Weather-Driven Solar Power Forecasting Using D-Informer: Enhancing Predictions with Climate Variables

  • Open Access

    ARTICLE

    Rolling Decision Model of Thermal Power Retrofit and Generation Expansion Planning Considering Carbon Emissions and Power Balance Risk

    Dong Pan1, Xu Gui1, Jiayin Xu1, Yuming Shen1, Haoran Xu2, Yinghao Ma2,*

    Energy Engineering, Vol.121, No.5, pp. 1309-1328, 2024, DOI:10.32604/ee.2024.046464

    Abstract With the increasing urgency of the carbon emission reduction task, the generation expansion planning process needs to add carbon emission risk constraints, in addition to considering the level of power adequacy. However, methods for quantifying and assessing carbon emissions and operational risks are lacking. It results in excessive carbon emissions and frequent load-shedding on some days, although meeting annual carbon emission reduction targets. First, in response to the above problems, carbon emission and power balance risk assessment indicators and assessment methods, were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios, considering power supply regulation… More >

  • Open Access

    ARTICLE

    Deep-Ensemble Learning Method for Solar Resource Assessment of Complex Terrain Landscapes

    Lifeng Li1, Zaimin Yang1, Xiongping Yang1, Jiaming Li2, Qianyufan Zhou3,*, Ping Yang3

    Energy Engineering, Vol.121, No.5, pp. 1329-1346, 2024, DOI:10.32604/ee.2023.046447

    Abstract As the global demand for renewable energy grows, solar energy is gaining attention as a clean, sustainable energy source. Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power plants. This study proposes an integrated deep learning-based photovoltaic resource assessment method. Ensemble learning and deep learning methods are fused for photovoltaic resource assessment for the first time. The proposed method combines the random forest, gated recurrent unit, and long short-term memory to effectively improve the accuracy and reliability of photovoltaic resource assessment. The proposed method has strong adaptability and high accuracy even in the… More >

  • Open Access

    ARTICLE

    A Wind Power Prediction Framework for Distributed Power Grids

    Bin Chen1, Ziyang Li1, Shipeng Li1, Qingzhou Zhao1, Xingdou Liu2,*

    Energy Engineering, Vol.121, No.5, pp. 1291-1307, 2024, DOI:10.32604/ee.2024.046374

    Abstract To reduce carbon emissions, clean energy is being integrated into the power system. Wind power is connected to the grid in a distributed form, but its high variability poses a challenge to grid stability. This article combines wind turbine monitoring data with numerical weather prediction (NWP) data to create a suitable wind power prediction framework for distributed grids. First, high-precision NWP of the turbine range is achieved using weather research and forecasting models (WRF), and Kriging interpolation locates predicted meteorological data at the turbine site. Then, a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion… More >

Displaying 1-10 on page 1 of 12373. Per Page