Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13,854)
  • Open Access

    ARTICLE

    Toward Analytical Homogenized Relaxation Modulus for Fibrous Composite Material with Reduced Order Homogenization Method

    Huilin Jia1, Shanqiao Huang1, Zifeng Yuan1,2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 193-222, 2025, DOI:10.32604/cmc.2024.059950 - 03 January 2025

    Abstract In this manuscript, we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites, bypassing general computational homogenization. The method is based on the reduced-order homogenization (ROH) approach. The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an ‘off-line’ stage, which offers substantial cost savings compared to direct computational homogenization methods. Due to the unique structure of the fibrous unit cell, “off-line” stage calculation can be eliminated by influence functions obtained analytically. Introducing the standard solid model to the ROH method More >

  • Open Access

    ARTICLE

    Intrumer: A Multi Module Distributed Explainable IDS/IPS for Securing Cloud Environment

    Nazreen Banu A*, S.K.B. Sangeetha

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 579-607, 2025, DOI:10.32604/cmc.2024.059805 - 03 January 2025

    Abstract The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network traffic. Cloud environments pose significant challenges in maintaining privacy and security. Global approaches, such as IDS, have been developed to tackle these issues. However, most conventional Intrusion Detection System (IDS) models struggle with unseen cyberattacks and complex high-dimensional data. In fact, this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system, named INTRUMER, which offers balanced accuracy, reliability, and security in cloud settings by multiple modules working together within it. The traffic captured… More >

  • Open Access

    ARTICLE

    CSRWA: Covert and Severe Attacks Resistant Watermarking Algorithm

    Balsam Dhyia Majeed1,2, Amir Hossein Taherinia1,*, Hadi Sadoghi Yazdi1, Ahad Harati1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1027-1047, 2025, DOI:10.32604/cmc.2024.059789 - 03 January 2025

    Abstract Watermarking is embedding visible or invisible data within media to verify its authenticity or protect copyright. The watermark is embedded in significant spatial or frequency features of the media to make it more resistant to intentional or unintentional modification. Some of these features are important perceptual features according to the human visual system (HVS), which means that the embedded watermark should be imperceptible in these features. Therefore, both the designers of watermarking algorithms and potential attackers must consider these perceptual features when carrying out their actions. The two roles will be considered in this paper… More >

  • Open Access

    REVIEW

    Enhancing Deepfake Detection: Proactive Forensics Techniques Using Digital Watermarking

    Zhimao Lai1,2, Saad Arif3, Cong Feng4, Guangjun Liao5, Chuntao Wang6,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 73-102, 2025, DOI:10.32604/cmc.2024.059370 - 03 January 2025

    Abstract With the rapid advancement of visual generative models such as Generative Adversarial Networks (GANs) and stable Diffusion, the creation of highly realistic Deepfake through automated forgery has significantly progressed. This paper examines the advancements in Deepfake detection and defense technologies, emphasizing the shift from passive detection methods to proactive digital watermarking techniques. Passive detection methods, which involve extracting features from images or videos to identify forgeries, encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics. In contrast, proactive digital watermarking techniques embed specific markers into images or videos, facilitating More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Approach for Automating App Review Classification: Advancing Usability Metrics Classification with an Aspect-Based Sentiment Analysis Framework

    Nahed Alsaleh1,2, Reem Alnanih1,*, Nahed Alowidi1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 949-976, 2025, DOI:10.32604/cmc.2024.059351 - 03 January 2025

    Abstract App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products. Automating the analysis of these reviews is vital for efficient review management. While traditional machine learning (ML) models rely on basic word-based feature extraction, deep learning (DL) methods, enhanced with advanced word embeddings, have shown superior performance. This research introduces a novel aspect-based sentiment analysis (ABSA) framework to classify app reviews based on key non-functional requirements, focusing on usability factors: effectiveness, efficiency, and satisfaction. We propose a hybrid DL model, combining BERT (Bidirectional Encoder Representations from Transformers) More >

  • Open Access

    ARTICLE

    A Support Vector Machine (SVM) Model for Privacy Recommending Data Processing Model (PRDPM) in Internet of Vehicles

    Ali Alqarni*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 389-406, 2025, DOI:10.32604/cmc.2024.059238 - 03 January 2025

    Abstract Open networks and heterogeneous services in the Internet of Vehicles (IoV) can lead to security and privacy challenges. One key requirement for such systems is the preservation of user privacy, ensuring a seamless experience in driving, navigation, and communication. These privacy needs are influenced by various factors, such as data collected at different intervals, trip durations, and user interactions. To address this, the paper proposes a Support Vector Machine (SVM) model designed to process large amounts of aggregated data and recommend privacy-preserving measures. The model analyzes data based on user demands and interactions with service More >

  • Open Access

    ARTICLE

    Industrial Control Anomaly Detection Based on Distributed Linear Deep Learning

    Shijie Tang1,2, Yong Ding1,3,4,*, Huiyong Wang5

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1129-1150, 2025, DOI:10.32604/cmc.2024.059143 - 03 January 2025

    Abstract As more and more devices in Cyber-Physical Systems (CPS) are connected to the Internet, physical components such as programmable logic controller (PLC), sensors, and actuators are facing greater risks of network attacks, and fast and accurate attack detection techniques are crucial. The key problem in distinguishing between normal and abnormal sequences is to model sequential changes in a large and diverse field of time series. To address this issue, we propose an anomaly detection method based on distributed deep learning. Our method uses a bilateral filtering algorithm for sequential sequences to remove noise in the More >

  • Open Access

    ARTICLE

    Robust Backstepping Control of a Quadrotor Unmanned Aerial Vehicle under Colored Noises

    Mehmet Karahan*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 777-798, 2025, DOI:10.32604/cmc.2024.059123 - 03 January 2025

    Abstract Advances in software and hardware technologies have facilitated the production of quadrotor unmanned aerial vehicles (UAVs). Nowadays, people actively use quadrotor UAVs in essential missions such as search and rescue, counter-terrorism, firefighting, surveillance, and cargo transportation. While performing these tasks, quadrotors must operate in noisy environments. Therefore, a robust controller design that can control the altitude and attitude of the quadrotor in noisy environments is of great importance. Many researchers have focused only on white Gaussian noise in their studies, whereas researchers need to consider the effects of all colored noises during the operation of… More >

  • Open Access

    REVIEW

    A Survey of Link Failure Detection and Recovery in Software-Defined Networks

    Suheib Alhiyari, Siti Hafizah AB Hamid*, Nur Nasuha Daud

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 103-137, 2025, DOI:10.32604/cmc.2024.059050 - 03 January 2025

    Abstract Software-defined networking (SDN) is an innovative paradigm that separates the control and data planes, introducing centralized network control. SDN is increasingly being adopted by Carrier Grade networks, offering enhanced network management capabilities than those of traditional networks. However, because SDN is designed to ensure high-level service availability, it faces additional challenges. One of the most critical challenges is ensuring efficient detection and recovery from link failures in the data plane. Such failures can significantly impact network performance and lead to service outages, making resiliency a key concern for the effective adoption of SDN. Since the More >

  • Open Access

    ARTICLE

    A Robust Security Detection Strategy for Next Generation IoT Networks

    Hafida Assmi1, Azidine Guezzaz1, Said Benkirane1, Mourade Azrour2,*, Said Jabbour3, Nisreen Innab4, Abdulatif Alabdulatif5

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 443-466, 2025, DOI:10.32604/cmc.2024.059047 - 03 January 2025

    Abstract Internet of Things (IoT) refers to the infrastructures that connect smart devices to the Internet, operating autonomously. This connectivity makes it possible to harvest vast quantities of data, creating new opportunities for the emergence of unprecedented knowledge. To ensure IoT securit, various approaches have been implemented, such as authentication, encoding, as well as devices to guarantee data integrity and availability. Among these approaches, Intrusion Detection Systems (IDS) is an actual security solution, whose performance can be enhanced by integrating various algorithms, including Machine Learning (ML) and Deep Learning (DL), enabling proactive and accurate detection of… More >

Displaying 11-20 on page 2 of 13854. Per Page