Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12,463)
  • Open Access

    ARTICLE

    A Coupled Magnetic-Elastic-Thermal Free-Energy Model with Hysteretic Nonlinearity for Terfenol-D Rods

    Tian-Zhong Wang1, You-He Zhou1,2

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 41-64, 2011, DOI:10.3970/cmc.2011.021.041

    Abstract Based on the thermodynamic theory and the postulates of Jiles and Atherton, a general coupled magnetic-elastic-thermal free-energy model with hysteretic nonlinearity is established for Terfenol-D rods, in which the effect of Weiss molecular field is incorporated. The quantitative agreement between numerical simulation results predicted by the free-energy model and existing experimental data confirms the validity and reliability of the obtained nonlinear theoretical model, and indicates that the free-energy model can accurately capture the nonlinear hysteresis characteristic of Terfenol-D. Meanwhile, the free-energy model is employed to investigate the influences of mechanical stress and the temperature on the magnetostrictive effect of Terfenol-D… More >

  • Open Access

    ARTICLE

    Using a Lie-Group Adaptive Method for the Identification of a Nonhomogeneous Conductivity Function and Unknown Boundary Data

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 17-40, 2011, DOI:10.3970/cmc.2011.021.017

    Abstract Only the left-boundary data of temperature and heat flux are used to estimate an unknown parameter function α(x) in Tt(x,t) = ∂(α(x)Tx)/∂x + h(x,t), as well as to recover the right-boundary data. When α(x) is given the above problem is a well-known inverse heat conduction problem (IHCP). This paper solves a mixed-type inverse problem as a combination of the IHCP and the problem of parameter identification, without needing to assume a function form of α(x) a priori, and without measuring extra data as those used by other methods. We use the one-step Lie-Group Adaptive Method (LGAM) for the semi-discretizations of… More >

  • Open Access

    ARTICLE

    Computation of Dyadic Green's Functions for Electrodynamics in Quasi-Static Approximation with Tensor Conductivity

    V.G.Yakhno1

    CMC-Computers, Materials & Continua, Vol.21, No.1, pp. 1-16, 2011, DOI:10.3970/cmc.2011.021.001

    Abstract Homogeneous non-dispersive anisotropic materials, characterized by a positive constant permeability and a symmetric positive definite conductivity tensor, are considered in the paper. In these anisotropic materials, the electric and magnetic dyadic Green's functions are defined as electric and magnetic fields arising from impulsive current dipoles and satisfying the time-dependent Maxwell's equations in quasi-static approximation. A new method of deriving these dyadic Green's functions is suggested in the paper. This method consists of several steps: equations for electric and magnetic dyadic Green's functions are written in terms of the Fourier modes; explicit formulae for the Fourier modes of dyadic Green's functions… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Fluid-Structure Interaction of LNG Prestressed Storage Tank under Seismic Influence

    X. H. Du1, X. P. Shen1

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 225-242, 2010, DOI:10.3970/cmc.2010.020.225

    Abstract Aim of this paper is to estimate the integrity of liquefied natural gas (LNG) prestressed storage tank under seismic influence. The coupled Eulerian-Lagrangian (CEL) analysis technique is used to simulate the fluid-structure interaction between LNG and the cylinder of LNG prestressed storage tank. The 3-D model of LNG has been dispersed by Eulerian mesh that is different from traditional analysis method which is called the added mass method. Meanwhile, both of the 3-D models of prestressed rebar and concrete structure are dispersed by Lagrangian mesh. Following conclusions are obtained: 1) Natural frequency of the whole model has been obtained by… More >

  • Open Access

    ARTICLE

    A Case Study on Mud-Weight Design with Finite-Element Method for Subsalt Wells

    X.P. Shen, A. Diaz1, T. Sheehy2

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 205-224, 2010, DOI:10.3970/cmc.2010.020.205

    Abstract This paper presents a case study for the design of a mud-weight window (MWW) with three-dimensional (3-D), finite-element (FE) tools for subsalt wells. The trajectory of the target well penetrates a 7 km thick salt body. A numerical scheme has been proposed for calculating the shear failure gradient (SFG) and fracture gradient (FG) with 3-D FE software. User subroutines have been developed to address non-uniform pore-pressure distribution. A series of FE calculations were performed to obtain the MWW of the target wellbore, which consists of the SFG and FG for the subsalt sections. Although no reverse faulting structure exists in… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Investigation on the Size of Damage Process Zone of a Concrete Specimen under Mixed-Mode Loading Conditions

    X.P. Shen1, J.L. Feng2

    CMC-Computers, Materials & Continua, Vol.20, No.2, pp. 185-204, 2010, DOI:10.3970/cmc.2010.020.185

    Abstract The characteristic length of a gradient-dependent damage model is a key parameter, which is usually regarded as the length of damage process zone (DPZ). Value and evolution of the size of DPZ were investigated by both a numerical method and an experimental manner. In the numerical study, the geometrical model adopted was a set of four-point shearing beams; the numerical tool used was the Abaqus/Explicit software. The distance between the front and end of a complete DPZ was obtained. Values of strain components at these points were given out at given time points. The experimental study of the evolution process… More >

  • Open Access

    ARTICLE

    Linear Matching Method for Design Limits in Plasticity

    Haofeng Chen1

    CMC-Computers, Materials & Continua, Vol.20, No.2, pp. 159-184, 2010, DOI:10.3970/cmc.2010.020.159

    Abstract In this paper a state-of-the-art numerical method is discussed for the evaluation of the shakedown and ratchet limits for an elastic-perfectly plastic body subjected to cyclic thermal and mechanical load history. The limit load or collapse load, i.e. the load carrying capacity, is also determined as a special case of shakedown analysis. These design limits in plasticity have been solved by characterizing the steady cyclic state using a general cyclic minimum theorem. For a prescribed class of kinematically admissible inelastic strain rate histories, the minimum of the functional for these design limits are found by a programming method, the Linear… More >

  • Open Access

    ARTICLE

    Parameter Identification Method of Large Macro-Micro Coupled Constitutive Models Based on Identifiability Analysis

    Jie Qu1,2, Bingye Xu3, Quanlin Jin4

    CMC-Computers, Materials & Continua, Vol.20, No.2, pp. 119-158, 2010, DOI:10.3970/cmc.2010.020.119

    Abstract Large and complex macro-micro coupled constitutive models, which describe metal flow and microstructure evolution during metal forming, are sometimes overparameterized with respect to given sets of experimental datum. This results in poorly identifiable or non-identifiable model parameters. In this paper, a systemic parameter identification method for the large macro-micro coupled constitutive models is proposed. This method is based on the global and local identifiability analysis, in which two identifiability measures are adopted. The first measure accounts for the sensitivity of model results with respect to single parameters, and the second measure accounts for the degree of near-linear dependence of sensitivity… More >

  • Open Access

    ARTICLE

    Design of a Two-State Shuttle Memory Device

    Richard K. F. Lee1, James M. Hill2

    CMC-Computers, Materials & Continua, Vol.20, No.1, pp. 85-100, 2010, DOI:10.3970/cmc.2010.020.085

    Abstract In this study, we investigate the mechanics of a metallofullerene shuttle memory device, comprising a metallofullerene which is located inside a closed carbon nanotube. The interaction energy for the system is obtained from the 6-12 Lennard-Jones potential using the continuum approximation, which assumes that a discrete atomic structure can be replaced by an average atomic surface density. This approach shows that the system has two equal minimum energy positions, which are symmetrically located close to the tube extremities, and therefore it gives rise to the possibility of being used as a two-state memory device. On one side the encapsulated metallofullerene… More >

  • Open Access

    ARTICLE

    Numerical Formulations for the Prediction of Deformation, Strain and Stress of Un-patterned ETFE Cushions

    N.J. Bartle1, P.D. Gosling1

    CMC-Computers, Materials & Continua, Vol.20, No.1, pp. 19-62, 2010, DOI:10.3970/cmc.2010.020.019

    Abstract ETFE cushions are increasingly being used to form high-profile facades and structural forms. This investigation aims to extend an analytical theory of large deformation in order to predict the shape and stress distributions of an un-patterned square ETFE cushion without the need to resort to discretised numerical methods. In order to assess the validity of the theoretical procedure a prototype cushion has been analysed using a finite element simulation. The theoretical procedure is also compared with alternative approximate equations proposed for the design of ETFE cushions. More >

Displaying 12371-12380 on page 1238 of 12463. Per Page