Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (323)
  • Open Access

    ARTICLE

    A Computational Fluid Dynamics Study of a 2D Airfoil in Hovering Flight Under Ground Effect

    J.M.C.Pereira1, N.A.R.Maia1, J.C.F.Pereira1

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.2, pp. 113-142, 2009, DOI:10.3970/cmes.2009.049.113

    Abstract We present a 2D incompressible Navier-Stokes numerical simulation of a virtual model of an elliptic, or flat plate, foil in hovering flight configuration. Computations obtained with a general purpose solver were validated against reference data on forward flapping flight, normal or dragonfly hovering. The moving mesh technique allows airfoil translation and angular mesh movement accompaining the airfoil stroke motion. Close to the ground the mesh deforms to occupy the narrow computational domain formed between the airfoil and the ground. Computations have been carried out for some parameters, including the distances h between the foil center and the surface, h/c =… More >

  • Open Access

    ARTICLE

    On the Convergence of Random Differential Quadrature (RDQ) Method and Its Application in Solving Nonlinear Differential Equations in Mechanics

    Hua Li1, Shantanu S. Mulay1, Simon See2

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.1, pp. 43-82, 2009, DOI:10.3970/cmes.2009.048.043

    Abstract Differential Quadrature (DQ) is one of the efficient derivative approximation techniques but it requires a regular domain with all the points distributed only along straight lines. This severely restricts the DQ while solving the irregular domain problems discretized by the random field nodes. This limitation of the DQ method is overcome in a proposed novel strong-form meshless method, called the random differential quadrature (RDQ) method. The RDQ method extends the applicability of the DQ technique over the irregular or regular domains discretized using the random field nodes by approximating a function value with the fixed reproducing kernel particle method (fixed… More >

  • Open Access

    ARTICLE

    Pricing Options with Stochastic Volatilities by the Local Differential Quadrature Method

    D. L. Young1,2, C. P. Sun1, L. H. Shen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.46, No.2, pp. 129-150, 2009, DOI:10.3970/cmes.2009.046.129

    Abstract A local differential quadrature (LDQ) method to solve the option-pricing models with stochastic volatilities is proposed. The present LDQ method is a newly developed numerical method which preserves the advantage of high-order numerical solution from the classic differential quadrature (DQ) method. The scheme also overcomes the negative effect of the ill-condition for the resultant full matrix and the sensitivity to the grid distribution. It offers a much better approach for finding the optimal order of polynomial approximation when compared to the conventional DQ method. The option-pricing problem under the stochastic volatilities is an important financial engineering topic governed by the… More >

  • Open Access

    ARTICLE

    High-Fidelity Tetrahedral Mesh Generation from Medical Imaging Data for Fluid-Structure Interaction Analysis of Cerebral Aneurysms

    Yongjie Zhang1, Wenyan Wang1, Xinghua Liang1, Yuri Bazilevs2, Ming-Chen Hsu2, Trond Kvamsdal3, Reidar Brekken4, Jørgen Isaksen5

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.2, pp. 131-150, 2009, DOI:10.3970/cmes.2009.042.131

    Abstract This paper describes a comprehensive and high-fidelity finite element meshing approach for patient-specific arterial geometries from medical imaging data, with emphasis on cerebral aneurysm configurations. The meshes contain both the blood volume and solid arterial wall, and are compatible at the fluid-solid interface. There are four main stages for this meshing method: 1) Image segmentation and geometric model construction; 2) Tetrahedral mesh generation for the fluid volume using the octree-based method; 3) Mesh quality improvement stage, in which edge-contraction, pillowing, optimization, geometric flow smoothing, and mesh cutting are applied to the fluid mesh; and 4) Mesh generation for the blood… More >

  • Open Access

    ARTICLE

    An automated approach for solution based mesh adaptation to enhance numerical accuracy for a given number of grid cells Applied to steady flow on hexahedral grids

    Peter Lucas1, Alexander H. van Zuijlen1, Hester Bijl1

    CMES-Computer Modeling in Engineering & Sciences, Vol.41, No.2, pp. 147-176, 2009, DOI:10.3970/cmes.2009.041.147

    Abstract Mesh adaptation is a fairly established tool to obtain numerically accurate solutions for flow problems. Computational efficiency is, however, not always guaranteed for the adaptation strategies found in literature. Typically excessive mesh growth diminishes the potential efficiency gain. This paper, therefore, extends the strategy proposed by [Aftosmis and Berger (2002)] to compute the refinement threshold. The extended strategy computes the refinement threshold based on a user desired number of grid cells and adaptations, thereby ensuring high computational efficiency. Because our main interest is flow around wind turbines, the adaptation strategy has been optimized for flow around wind turbine airfoils. The… More >

  • Open Access

    ARTICLE

    Simulation of the Slow Drag of a Cylinder through a Confined Pressurized Bed of Dumbbell and Elliptically Cylindrical Granules Using the Discrete Element Method

    Fuping Zhou1, Suresh G. Advani2, Eric D. Wetzel3

    CMES-Computer Modeling in Engineering & Sciences, Vol.39, No.1, pp. 49-66, 2009, DOI:10.3970/cmes.2009.039.049

    Abstract Slow drag of a cylinder through a confined, pressurized bed of granules is studied using two-dimensional discrete element method (DEM) simulations. The time-dependent total drag force experienced by the circular cylinder is calculated from the normal and tangential contact forces between the surfaces. To evaluate the role of the granule shape and the aspect ratio on the drag force, the simulation is performed for cylindrical granules, dumbbell-shaped granules, and elliptical granules of three different aspect ratios. Simulation results show that the drag in dumbbell-shaped granules is higher than that in cylindrical granules. In contrast, the drag in elliptical granules decreases… More >

  • Open Access

    ARTICLE

    Discrete Constitutive Equations over Hexahedral Grids for Eddy-current Problems

    L. Codecasa1, R. Specogna2, F. Trevisan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.3, pp. 129-144, 2008, DOI:10.3970/cmes.2008.031.129

    Abstract In the paper we introduce a methodology to construct discrete constitutive matrices relating magnetic fluxes with magneto motive forces (reluctance matrix) and electro motive forces with currents (conductance matrix) needed for discretizing eddy current problems over hexahedral primal grids by means of the Finite Integration Technique (FIT) and the Cell Method (CM). We prove that, unlike the mass matrices of Finite Elements, the proposed matrices ensure both the stability and the consistency of the discrete equations introduced in FIT and CM. More >

  • Open Access

    ARTICLE

    Examination and Analysis of Implementation Choices within the Material Point Method (MPM)

    M. Steffen1, P.C. Wallstedt2, J.E. Guilkey2,3, R.M. Kirby1, M. Berzins1

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.2, pp. 107-128, 2008, DOI:10.3970/cmes.2008.031.107

    Abstract The Material Point Method (MPM) has shown itself to be a powerful tool in the simulation of large deformation problems, especially those involving complex geometries and contact where typical finite element type methods frequently fail. While these large complex problems lead to some impressive simulations and solutions, there has been a lack of basic analysis characterizing the errors present in the method, even on the simplest of problems. The large number of choices one has when implementing the method, such as the choice of basis functions and boundary treatments, further complicates this error analysis.\newline In this paper we explore some… More >

  • Open Access

    ARTICLE

    Numerical Computation of Space Derivatives by the Complex-Variable-Differentiation Method in the Convolution Quadrature Method Based BEM Formulation

    A.I. Abreu1, W.J. Mansur1, D. Soares Jr1,2, J.A.M. Carrer3

    CMES-Computer Modeling in Engineering & Sciences, Vol.30, No.3, pp. 123-132, 2008, DOI:10.3970/cmes.2008.030.123

    Abstract This paper is concerned with the numerical computation of space derivatives of a time-domain (TD-) Boundary Element Method (BEM) formulation for the analysis of scalar wave propagation problems. In the present formulation, the Convolution Quadrature Method (CQM) is adopted, i.e., the basic integral equation of the TD-BEM is numerically substituted by a quadrature formula, whose weights are computed using the Laplace transform of the fundamental solution and a linear multi-step method. In order to numerically compute space derivatives, the present work properly transforms the quadrature weights of the CQM-BEM, adopting the so-called Complex-Variable-Differentiation Method (CVDM). Numerical examples are presented at… More >

  • Open Access

    ARTICLE

    Numerical Identification of the Hydraulic Conductivity of Composite Anisotropic Materials

    S. D. Harris1, R. Mustata2, L. Elliott2, D. B. Ingham2, D. Lesnic2

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.2, pp. 69-80, 2008, DOI:10.3970/cmes.2008.025.069

    Abstract Two homogeneous anisotropic materials are butted together to form a contact surface within a single composite material (the specimen). An inverse boundary element method (BEM) is developed to determine the components of the hydraulic conductivity tensor of each material and the position of the contact surface. A steady state flow is forced through the specimen by the application of a constant pressure differential on its opposite faces. Experimental measurements (simulated) of pressure and average hydraulic flux at exposed boundaries are then used in a modified least squares functional. This functional minimises the gap between the above measured (simulated) values and… More >

Displaying 301-310 on page 31 of 323. Per Page