Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Forecasting Damage Mechanics By Deep Learning

    Duyen Le Hien Nguyen1, Dieu Thi Thanh Do2, Jaehong Lee2, Timon Rabczuk3, Hung Nguyen-Xuan1,4,*

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 951-977, 2019, DOI:10.32604/cmc.2019.08001

    Abstract We in this paper exploit time series algorithm based deep learning in forecasting damage mechanics problems. The methodologies that are able to work accurately for less computational and resolving attempts are a significant demand nowadays. Relied on learning an amount of information from given data, the long short-term memory (LSTM) method and multi-layer neural networks (MNN) method are applied to predict solutions. Numerical examples are implemented for predicting fracture growth rates of L-shape concrete specimen under load ratio, single-edge-notched beam forced by 4-point shear and hydraulic fracturing in permeable porous media problems such as storage-toughness More >

Displaying 1-10 on page 1 of 1. Per Page