Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access


    Novelty of Different Distance Approach for Multi-Criteria Decision-Making Challenges Using q-Rung Vague Sets

    Murugan Palanikumar1, Nasreen Kausar2,*, Dragan Pamucar3,4, Seifedine Kadry5,6,7,*, Chomyong Kim8, Yunyoung Nam9

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3353-3385, 2024, DOI:10.32604/cmes.2024.031439

    Abstract In this article, multiple attribute decision-making problems are solved using the vague normal set (VNS). It is possible to generalize the vague set (VS) and q-rung fuzzy set (FS) into the q-rung vague set (VS). A log q-rung normal vague weighted averaging (log q-rung NVWA), a log q-rung normal vague weighted geometric (log q-rung NVWG), a log generalized q-rung normal vague weighted averaging (log Gq-rung NVWA), and a log generalized q-rung normal vague weighted geometric (log Gq-rung NVWG) operator are discussed in this article. A description is provided of the scoring function, accuracy function and operational laws of the log q-rung… More >

  • Open Access


    Interval Type-2 Fuzzy Model for Intelligent Fire Intensity Detection Algorithm with Decision Making in Low-Power Devices

    Emmanuel Lule1,2,*, Chomora Mikeka3, Alexander Ngenzi4, Didacienne Mukanyiligira5

    Intelligent Automation & Soft Computing, Vol.38, No.1, pp. 57-81, 2023, DOI:10.32604/iasc.2023.037988

    Abstract Local markets in East Africa have been destroyed by raging fires, leading to the loss of life and property in the nearby communities. Electrical circuits, arson, and neglected charcoal stoves are the major causes of these fires. Previous methods, i.e., satellites, are expensive to maintain and cause unnecessary delays. Also, unit-smoke detectors are highly prone to false alerts. In this paper, an Interval Type-2 TSK fuzzy model for an intelligent lightweight fire intensity detection algorithm with decision-making in low-power devices is proposed using a sparse inference rules approach. A free open–source MATLAB/Simulink fuzzy toolbox integrated… More >

  • Open Access


    Analyzing the Impact of Blockchain Models for Securing Intelligent Logistics through Unified Computational Techniques

    Mohammed S. Alsaqer1, Majid H. Alsulami2,*, Rami N. Alkhawaji3, Abdulellah A. Alaboudi2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3943-3968, 2023, DOI:10.32604/cmc.2023.042379

    Abstract Blockchain technology has revolutionized conventional trade. The success of blockchain can be attributed to its distributed ledger characteristic, which secures every record inside the ledger using cryptography rules, making it more reliable, secure, and tamper-proof. This is evident by the significant impact that the use of this technology has had on people connected to digital spaces in the present-day context. Furthermore, it has been proven that blockchain technology is evolving from new perspectives and that it provides an effective mechanism for the intelligent transportation system infrastructure. To realize the full potential of the accurate and… More >

  • Open Access


    Decision Making Based on Valued Fuzzy Superhypergraphs

    Mohammad Hamidi1,*, Florentin Smarandache2, Mohadeseh Taghinezhad1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1907-1923, 2024, DOI:10.32604/cmes.2023.030284

    Abstract This paper explores the defects in fuzzy (hyper) graphs (as complex (hyper) networks) and extends the fuzzy (hyper) graphs to fuzzy (quasi) superhypergraphs as a new concept. We have modeled the fuzzy superhypergraphs as complex superhypernetworks in order to make a relation between labeled objects in the form of details and generalities. Indeed, the structure of fuzzy (quasi) superhypergraphs collects groups of labeled objects and analyzes them in the form of the part to part of objects, the part of objects to the whole group of objects, and the whole to the whole group of… More >

  • Open Access


    A Large-Scale Group Decision Making Model Based on Trust Relationship and Social Network Updating

    Rongrong Ren1,2, Luyang Su1,2, Xinyu Meng1,2, Jianfang Wang3, Meng Zhao1,2,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 429-458, 2024, DOI:10.32604/cmes.2023.027310

    Abstract With the development of big data and social computing, large-scale group decision making (LGDM) is now merging with social networks. Using social network analysis (SNA), this study proposes an LGDM consensus model that considers the trust relationship among decision makers (DMs). In the process of consensus measurement: the social network is constructed according to the social relationship among DMs, and the Louvain method is introduced to classify social networks to form subgroups. In this study, the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights. In the… More >

  • Open Access


    Pythagorean Fuzzy Einstein Aggregation Operators with Z-Numbers: Application in Complex Decision Aid Systems

    Shahzad Noor Abbasi1, Shahzaib Ashraf1,*, M. Shazib Hameed1, Sayed M. Eldin2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2795-2844, 2023, DOI:10.32604/cmes.2023.028963

    Abstract The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability and reliability in their decision-making. The PFS is known to address the levels of participation and non-participation. To begin, we introduce the novel concept of a PFZN, which is a hybrid structure of Pythagorean fuzzy sets and the ZN. The PFZN is graded in terms of membership and non-membership, as well as reliability, which provides a strong advice in real-world decision support concerns. The PFZN is a… More >

  • Open Access


    Investigation of the Severity of Modular Construction Adoption Barriers with Large-Scale Group Decision Making in an Organization from Internal and External Stakeholder Perspectives

    Muzi Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2465-2493, 2023, DOI:10.32604/cmes.2023.026827

    Abstract Modular construction as an innovative method aids the construction industry in transforming to off-site construction production with high efficiency and environmental friendliness. Despite the obvious advantages, the uptake of modular construction is not booming as expected. However, previous studies have investigated and summarized the barriers to the adoption of modular construction. In this research, a Large-Scale Group Decision Making (LSGDM)- based analysis is first made of the severity of barriers to modular construction adoption from the perspective of construction stakeholders. In addition, the Technology-Organization-Environment (TOE) framework is utilized to identify the barriers based on three More >

  • Open Access


    Two-Sided Matching Decision Making with Multi-Attribute Probabilistic Hesitant Fuzzy Sets

    Peichen Zhao1, Qi Yue2,*, Zhibin Deng3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 849-873, 2023, DOI:10.32604/iasc.2023.037090

    Abstract In previous research on two-sided matching (TSM) decision, agents’ preferences were often given in the form of exact values of ordinal numbers and linguistic phrase term sets. Nowdays, the matching agent cannot perform the exact evaluation in the TSM situations due to the great fuzziness of human thought and the complexity of reality. Probability hesitant fuzzy sets, however, have grown in popularity due to their advantages in communicating complex information. Therefore, this paper develops a TSM decision-making approach with multi-attribute probability hesitant fuzzy sets and unknown attribute weight information. The agent attribute weight vector should… More >

  • Open Access


    High Utility Periodic Frequent Pattern Mining in Multiple Sequences

    Chien-Ming Chen1, Zhenzhou Zhang1, Jimmy Ming-Tai Wu1, Kuruva Lakshmanna2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 733-759, 2023, DOI:10.32604/cmes.2023.027463

    Abstract Periodic pattern mining has become a popular research subject in recent years; this approach involves the discovery of frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic pattern mining have ignored the utility (profit, value) of patterns. Additionally, these algorithms only identify periodic patterns in a single sequence. However, identifying patterns of high utility that are common to a set of sequences is more valuable. In several fields, identifying high-utility periodic frequent patterns in multiple sequences is important. In this study, an efficient algorithm called MHUPFPS was proposed to identify such patterns. More >

  • Open Access


    Intelligent Beetle Antenna Search with Deep Transfer Learning Enabled Medical Image Classification Model

    Mohamed Ibrahim Waly*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3159-3174, 2023, DOI:10.32604/csse.2023.035900

    Abstract Recently, computer assisted diagnosis (CAD) model creation has become more dependent on medical picture categorization. It is often used to identify several conditions, including brain disorders, diabetic retinopathy, and skin cancer. Most traditional CAD methods relied on textures, colours, and forms. Because many models are issue-oriented, they need a more substantial capacity to generalize and cannot capture high-level problem domain notions. Recent deep learning (DL) models have been published, providing a practical way to develop models specifically for classifying input medical pictures. This paper offers an intelligent beetle antenna search (IBAS-DTL) method for classifying medical… More >

Displaying 1-10 on page 1 of 88. Per Page