Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,955)
  • Open Access

    ARTICLE

    Face Mask and Social Distance Monitoring via Computer Vision and Deployable System Architecture

    Meherab Mamun Ratul, Kazi Ayesha Rahman, Javeria Fazal, Naimur Rahman Abanto, Riasat Khan*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3641-3658, 2023, DOI:10.32604/iasc.2023.030638 - 17 August 2022

    Abstract The coronavirus (COVID-19) is a lethal virus causing a rapidly infectious disease throughout the globe. Spreading awareness, taking preventive measures, imposing strict restrictions on public gatherings, wearing facial masks, and maintaining safe social distancing have become crucial factors in keeping the virus at bay. Even though the world has spent a whole year preventing and curing the disease caused by the COVID-19 virus, the statistics show that the virus can cause an outbreak at any time on a large scale if thorough preventive measures are not maintained accordingly. To fight the spread of this virus,… More >

  • Open Access

    ARTICLE

    Arithmetic Optimization with Deep Learning Enabled Churn Prediction Model for Telecommunication Industries

    Vani Haridasan*, Kavitha Muthukumaran, K. Hariharanath

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3531-3544, 2023, DOI:10.32604/iasc.2023.030628 - 17 August 2022

    Abstract Customer retention is one of the challenging issues in different business sectors, and various firms utilize customer churn prediction (CCP) process to retain existing customers. Because of the direct impact on the company revenues, particularly in the telecommunication sector, firms are needed to design effective CCP models. The recent advances in machine learning (ML) and deep learning (DL) models enable researchers to introduce accurate CCP models in the telecommunication sector. CCP can be considered as a classification problem, which aims to classify the customer into churners and non-churners. With this motivation, this article focuses on… More >

  • Open Access

    ARTICLE

    Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features

    Siva Sankari Subbiah1, Senthil Kumar Paramasivan2,*, Karmel Arockiasamy3, Saminathan Senthivel4, Muthamilselvan Thangavel2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3829-3844, 2023, DOI:10.32604/iasc.2023.030480 - 17 August 2022

    Abstract Wind speed forecasting is important for wind energy forecasting. In the modern era, the increase in energy demand can be managed effectively by forecasting the wind speed accurately. The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty, the curse of dimensionality, overfitting and non-linearity issues. The curse of dimensionality and overfitting issues are handled by using Boruta feature selection. The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory (Bi-LSTM). In this paper, Bi-LSTM with Boruta feature… More >

  • Open Access

    ARTICLE

    Content-Based Movie Recommendation System Using MBO with DBN

    S. Sridhar1,*, D. Dhanasekaran2, G. Charlyn Pushpa Latha3

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3241-3257, 2023, DOI:10.32604/iasc.2023.030361 - 17 August 2022

    Abstract The content-based filtering technique has been used effectively in a variety of Recommender Systems (RS). The user explicitly or implicitly provides data in the Content-Based Recommender System. The system collects this data and creates a profile for all the users, and the recommendation is generated by the user profile. The recommendation generated via content-based filtering is provided by observing just a single user’s profile. The primary objective of this RS is to recommend a list of movies based on the user’s preferences. A content-based movie recommendation model is proposed in this research, which recommends movies… More >

  • Open Access

    ARTICLE

    Unconstrained Gender Recognition from Periocular Region Using Multiscale Deep Features

    Raqinah Alrabiah, Muhammad Hussain*, Hatim A. AboAlSamh

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2941-2962, 2023, DOI:10.32604/iasc.2023.030036 - 17 August 2022

    Abstract The gender recognition problem has attracted the attention of the computer vision community due to its importance in many applications (e.g., surveillance and human–computer interaction [HCI]). Images of varying levels of illumination, occlusion, and other factors are captured in uncontrolled environments. Iris and facial recognition technology cannot be used on these images because iris texture is unclear in these instances, and faces may be covered by a scarf, hijab, or mask due to the COVID-19 pandemic. The periocular region is a reliable source of information because it features rich discriminative biometric features. However, most existing… More >

  • Open Access

    ARTICLE

    Cephalopods Classification Using Fine Tuned Lightweight Transfer Learning Models

    P. Anantha Prabha1,*, G. Suchitra2, R. Saravanan3

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3065-3079, 2023, DOI:10.32604/iasc.2023.030017 - 17 August 2022

    Abstract Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist. Manual observation and identification take time and are always contingent on the involvement of experts. A system is proposed to alleviate this challenge that uses transfer learning techniques to classify the cephalopods automatically. In the proposed method, only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition. First, the efficiency of the chosen models is determined by evaluating their performance and comparing the findings. Second, the models are fine-tuned by adding dense layers… More >

  • Open Access

    ARTICLE

    Optimal Deep Belief Network Enabled Malware Detection and Classification Model

    P. Pandi Chandran1,*, N. Hema Rajini2, M. Jeyakarthic3

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3349-3364, 2023, DOI:10.32604/iasc.2023.029946 - 17 August 2022

    Abstract Cybercrime has increased considerably in recent times by creating new methods of stealing, changing, and destroying data in daily lives. Portable Document Format (PDF) has been traditionally utilized as a popular way of spreading malware. The recent advances of machine learning (ML) and deep learning (DL) models are utilized to detect and classify malware. With this motivation, this study focuses on the design of mayfly optimization with a deep belief network for PDF malware detection and classification (MFODBN-MDC) technique. The major intention of the MFODBN-MDC technique is for identifying and classifying the presence of malware… More >

  • Open Access

    ARTICLE

    Recent Advances in Fatigue Detection Algorithm Based on EEG

    Fei Wang1,2, Yinxing Wan1, Man Li1,2, Haiyun Huang1,2, Li Li1, Xueying Hou1, Jiahui Pan1,2, Zhenfu Wen3, Jingcong Li1,2,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3573-3586, 2023, DOI:10.32604/iasc.2023.029698 - 17 August 2022

    Abstract Fatigue is a state commonly caused by overworked, which seriously affects daily work and life. How to detect mental fatigue has always been a hot spot for researchers to explore. Electroencephalogram (EEG) is considered one of the most accurate and objective indicators. This article investigated the development of classification algorithms applied in EEG-based fatigue detection in recent years. According to the different source of the data, we can divide these classification algorithms into two categories, intra-subject (within the same subject) and cross-subject (across different subjects). In most studies, traditional machine learning algorithms with artificial feature… More >

  • Open Access

    ARTICLE

    Robust Deep Transfer Learning Based Object Detection and Tracking Approach

    C. Narmadha1, T. Kavitha2, R. Poonguzhali2, V. Hamsadhwani3, Ranjan walia4, Monia5, B. Jegajothi6,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3613-3626, 2023, DOI:10.32604/iasc.2023.029323 - 17 August 2022

    Abstract At present days, object detection and tracking concepts have gained more importance among researchers and business people. Presently, deep learning (DL) approaches have been used for object tracking as it increases the performance and speed of the tracking process. This paper presents a novel robust DL based object detection and tracking algorithm using Automated Image Annotation with ResNet based Faster regional convolutional neural network (R-CNN) named (AIA-FRCNN) model. The AIA-RFRCNN method performs image annotation using a Discriminative Correlation Filter (DCF) with Channel and Spatial Reliability tracker (CSR) called DCF-CSRT model. The AIA-RFRCNN model makes use… More >

  • Open Access

    ARTICLE

    A Light-Weight Deep Learning-Based Architecture for Sign Language Classification

    M. Daniel Nareshkumar1,*, B. Jaison2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3501-3515, 2023, DOI:10.32604/iasc.2023.027848 - 17 August 2022

    Abstract With advancements in computing powers and the overall quality of images captured on everyday cameras, a much wider range of possibilities has opened in various scenarios. This fact has several implications for deaf and dumb people as they have a chance to communicate with a greater number of people much easier. More than ever before, there is a plethora of info about sign language usage in the real world. Sign languages, and by extension the datasets available, are of two forms, isolated sign language and continuous sign language. The main difference between the two types… More >

Displaying 1171-1180 on page 118 of 1955. Per Page