Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,871)
  • Open Access

    ARTICLE

    HybridFusionNet with Explanability: A Novel Explainable Deep Learning-Based Hybrid Framework for Enhanced Skin Lesion Classification Using Dermoscopic Images

    Mohamed Hammad1,2,*, Mohammed ElAffendi1, Souham Meshoul3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1055-1086, 2025, DOI:10.32604/cmes.2025.072650 - 30 October 2025

    Abstract Skin cancer is among the most common malignancies worldwide, but its mortality burden is largely driven by aggressive subtypes such as melanoma, with outcomes varying across regions and healthcare settings. These variations emphasize the importance of reliable diagnostic technologies that support clinicians in detecting skin malignancies with higher accuracy. Traditional diagnostic methods often rely on subjective visual assessments, which can lead to misdiagnosis. This study addresses these challenges by developing HybridFusionNet, a novel model that integrates Convolutional Neural Networks (CNN) with 1D feature extraction techniques to enhance diagnostic accuracy. Utilizing two extensive datasets, BCN20000 and… More >

  • Open Access

    ARTICLE

    Deep Learning Model for Identifying Internal Flaws Based on Image Quadtree SBFEM and Deep Neural Networks

    Hanyu Tao1,2, Dongye Sun1,2, Tao Fang1,2, Wenhu Zhao1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 521-536, 2025, DOI:10.32604/cmes.2025.072089 - 30 October 2025

    Abstract Structural internal flaws often weaken the performance and integral stability, while traditional nondestructive testing or inversion methods face challenges of high cost and low efficiency in quantitative flaw identification. To quickly identify internal flaws within structures, a deep learning model for flaw detection is proposed based on the image quadtree scaled boundary finite element method (SBFEM) combined with a deep neural network (DNN). The training dataset is generated from the numerical simulations using the balanced quadtree algorithm and SBFEM, where the structural domain is discretized based on recursive decomposition principles and mesh refinement is automatically… More >

  • Open Access

    ARTICLE

    A Quantum-Enhanced Biometric Fusion Network for Cybersecurity Using Face and Voice Recognition

    Abrar M. Alajlan1,*, Abdul Razaque2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 919-946, 2025, DOI:10.32604/cmes.2025.071996 - 30 October 2025

    Abstract Biometric authentication provides a reliable, user-specific approach for identity verification, significantly enhancing access control and security against unauthorized intrusions in cybersecurity. Unimodal biometric systems that rely on either face or voice recognition encounter several challenges, including inconsistent data quality, environmental noise, and susceptibility to spoofing attacks. To address these limitations, this research introduces a robust multi-modal biometric recognition framework, namely Quantum-Enhanced Biometric Fusion Network. The proposed model strengthens security and boosts recognition accuracy through the fusion of facial and voice features. Furthermore, the model employs advanced pre-processing techniques to generate high-quality facial images and voice… More >

  • Open Access

    ARTICLE

    A CGAN Framework for Predicting Crack Patterns and Stress-Strain Behavior in Concrete Random Media

    Xing Lin1, Junning Wu1, Shixue Liang1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 215-239, 2025, DOI:10.32604/cmes.2025.070846 - 30 October 2025

    Abstract Random media like concrete and ceramics exhibit stochastic crack propagation due to their heterogeneous microstructures. This study establishes a Conditional Generative Adversarial Network (CGAN) combined with random field modeling for the efficient prediction of stochastic crack patterns and stress-strain responses. A total dataset of 500 samples, including crack propagation images and corresponding stress-strain curves, is generated via random Finite Element Method (FEM) simulations. This dataset is then partitioned into 400 training and 100 testing samples. The model demonstrates robust performance with Intersection over Union (IoU) scores of 0.8438 and 0.8155 on training and testing datasets, More >

  • Open Access

    ARTICLE

    Efficient Malicious QR Code Detection System Using an Advanced Deep Learning Approach

    Abdulaziz A. Alsulami1, Qasem Abu Al-Haija2,*, Badraddin Alturki3, Ayman Yafoz1, Ali Alqahtani4, Raed Alsini1, Sami Saeed Binyamin5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1117-1140, 2025, DOI:10.32604/cmes.2025.070745 - 30 October 2025

    Abstract QR codes are widely used in applications such as information sharing, advertising, and digital payments. However, their growing adoption has made them attractive targets for malicious activities, including malware distribution and phishing attacks. Traditional detection approaches rely on URL analysis or image-based feature extraction, which may introduce significant computational overhead and limit real-time applicability, and their performance often depends on the quality of extracted features. Previous studies in malicious detection do not fully focus on QR code security when combining convolutional neural networks (CNNs) with recurrent neural networks (RNNs). This research proposes a deep learning… More >

  • Open Access

    ARTICLE

    A Multimodal Learning Framework to Reduce Misclassification in GI Tract Disease Diagnosis

    Sadia Fatima1, Fadl Dahan2,*, Jamal Hussain Shah1, Refan Almohamedh2, Mohammed Aloqaily2, Samia Riaz1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 971-994, 2025, DOI:10.32604/cmes.2025.070272 - 30 October 2025

    Abstract The human gastrointestinal (GI) tract is influenced by numerous disorders. If not detected in the early stages, they may result in severe consequences such as organ failure or the development of cancer, and in extreme cases, become life-threatening. Endoscopy is a specialised imaging technique used to examine the GI tract. However, physicians might neglect certain irregular morphologies during the examination due to continuous monitoring of the video recording. Recent advancements in artificial intelligence have led to the development of high-performance AI-based systems, which are optimal for computer-assisted diagnosis. Due to numerous limitations in endoscopic image… More >

  • Open Access

    ARTICLE

    Physics-Informed Neural Networks for Multiaxial Fatigue Life Prediction of Aluminum Alloy

    Ehsan Akbari1, Tajbakhsh Navid Chakherlou1, Hamed Tabrizchi2,3,*, Amir Mosavi3,4,5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 305-325, 2025, DOI:10.32604/cmes.2025.068581 - 30 October 2025

    Abstract The ability to predict multiaxial fatigue life of Al-Alloy 7075-T6 under complex loading conditions is critical to assessing its durability under complex loading conditions, particularly in aerospace, automotive, and structural applications. This paper presents a physical-informed neural network (PINN) model to predict the fatigue life of Al-Alloy 7075-T6 over a variety of multiaxial stresses. The model integrates the principles of the Geometric Multiaxial Fatigue Life (GMFL) approach, which is a novel fatigue life prediction approach to estimating fatigue life by combining multiple fatigue criteria. The proposed model aims to estimate fatigue damage accumulation by the More >

  • Open Access

    ARTICLE

    Deep Learning-Based Inverse Design: Exploring Latent Space Information for Geometric Structure Optimization

    Nguyen Dong Phuong1, Nanthakumar Srivilliputtur Subbiah1, Yabin Jin2, Xiaoying Zhuang1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 263-303, 2025, DOI:10.32604/cmes.2025.067100 - 30 October 2025

    Abstract Traditional inverse neural network (INN) approaches for inverse design typically require auxiliary feedforward networks, leading to increased computational complexity and architectural dependencies. This study introduces a standalone INN methodology that eliminates the need for feedforward networks while maintaining high reconstruction accuracy. The approach integrates Principal Component Analysis (PCA) and Partial Least Squares (PLS) for optimized feature space learning, enabling the standalone INN to effectively capture bidirectional mappings between geometric parameters and mechanical properties. Validation using established numerical datasets demonstrates that the standalone INN architecture achieves reconstruction accuracy equal or better than traditional tandem approaches while More >

  • Open Access

    ARTICLE

    Deep Learning-Based Investigation of Multiphase Flow and Heat Transfer in CO2–Water Enhanced Geothermal Systems

    Feng He*, Rui Tan, Songlian Jiang, Chao Qian, Chengzhong Bu, Benqiang Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2557-2577, 2025, DOI:10.32604/fdmp.2025.070186 - 30 October 2025

    Abstract This study introduces a Transformer-based multimodal fusion framework for simulating multiphase flow and heat transfer in carbon dioxide (CO2)–water enhanced geothermal systems (EGS). The model integrates geological parameters, thermal gradients, and control schedules to enable fast and accurate prediction of complex reservoir dynamics. The main contributions are: (i) development of a workflow that couples physics-based reservoir simulation with a Transformer neural network architecture, (ii) design of physics-guided loss functions to enforce conservation of mass and energy, (iii) application of the surrogate model to closed-loop optimization using a differential evolution (DE) algorithm, and (iv) incorporation of economic… More >

  • Open Access

    ARTICLE

    Advancing Sinkhole Susceptibility Mapping in Urbanised Karst Landscapes

    Yan Eng Tan*, Siti Nur Aliaa Roslan

    Revue Internationale de Géomatique, Vol.34, pp. 777-791, 2025, DOI:10.32604/rig.2025.070997 - 23 October 2025

    Abstract Sinkholes, typically associated with karst landscapes, are emerging as significant geohazards in rapidly urbanising regions such as Kuala Lumpur, where human activities like land development, underground infrastructure, and groundwater extraction exacerbate subsurface instability. Despite their destructive potential, sinkholes remain under-monitored in Malaysia due to fragmented data and the lack of predictive spatial tools. This study aimed to develop a web-based, machine learning-driven framework for sinkhole susceptibility mapping to support public awareness, hazard mitigation, and geospatially informed urban planning. The framework was implemented using Google Earth Engine and Google Colab, focusing on Kuala Lumpur and parts… More >

Displaying 1-10 on page 1 of 1871. Per Page