Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,417)
  • Open Access

    ARTICLE

    Sepsis Prediction Using CNNBDLSTM and Temporal Derivatives Feature Extraction in the IoT Medical Environment

    Sapiah Sakri1, Shakila Basheer1, Zuhaira Muhammad Zain1, Nurul Halimatul Asmak Ismail2,*, Dua’ Abdellatef Nassar1, Manal Abdullah Alohali1, Mais Ayman Alharaki1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1157-1185, 2024, DOI:10.32604/cmc.2024.048051

    Abstract Background: Sepsis, a potentially fatal inflammatory disease triggered by infection, carries significant health implications worldwide. Timely detection is crucial as sepsis can rapidly escalate if left undetected. Recent advancements in deep learning (DL) offer powerful tools to address this challenge. Aim: Thus, this study proposed a hybrid CNNBDLSTM, a combination of a convolutional neural network (CNN) with a bi-directional long short-term memory (BDLSTM) model to predict sepsis onset. Implementing the proposed model provides a robust framework that capitalizes on the complementary strengths of both architectures, resulting in more accurate and timelier predictions. Method: The sepsis prediction method proposed here utilizes… More >

  • Open Access

    ARTICLE

    Securing Cloud-Encrypted Data: Detecting Ransomware-as-a-Service (RaaS) Attacks through Deep Learning Ensemble

    Amardeep Singh1, Hamad Ali Abosaq2, Saad Arif3, Zohaib Mushtaq4,*, Muhammad Irfan5, Ghulam Abbas6, Arshad Ali7, Alanoud Al Mazroa8

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 857-873, 2024, DOI:10.32604/cmc.2024.048036

    Abstract Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries, especially in light of the growing number of cybersecurity threats. A major and ever-present threat is Ransomware-as-a-Service (RaaS) assaults, which enable even individuals with minimal technical knowledge to conduct ransomware operations. This study provides a new approach for RaaS attack detection which uses an ensemble of deep learning models. For this purpose, the network intrusion detection dataset “UNSW-NB15” from the Intelligent Security Group of the University of New South Wales, Australia is analyzed. In the initial phase, the rectified linear… More >

  • Open Access

    ARTICLE

    Enhancing Skin Cancer Diagnosis with Deep Learning: A Hybrid CNN-RNN Approach

    Syeda Shamaila Zareen1,*, Guangmin Sun1,*, Mahwish Kundi2, Syed Furqan Qadri3, Salman Qadri4

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1497-1519, 2024, DOI:10.32604/cmc.2024.047418

    Abstract Skin cancer diagnosis is difficult due to lesion presentation variability. Conventional methods struggle to manually extract features and capture lesions spatial and temporal variations. This study introduces a deep learning-based Convolutional and Recurrent Neural Network (CNN-RNN) model with a ResNet-50 architecture which used as the feature extractor to enhance skin cancer classification. Leveraging synergistic spatial feature extraction and temporal sequence learning, the model demonstrates robust performance on a dataset of 9000 skin lesion photos from nine cancer types. Using pre-trained ResNet-50 for spatial data extraction and Long Short-Term Memory (LSTM) for temporal dependencies, the model achieves a high average recognition… More >

  • Open Access

    ARTICLE

    Spinal Vertebral Fracture Detection and Fracture Level Assessment Based on Deep Learning

    Yuhang Wang1,*, Zhiqin He1, Qinmu Wu1, Tingsheng Lu2, Yu Tang1, Maoyun Zhu1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1377-1398, 2024, DOI:10.32604/cmc.2024.047379

    Abstract This paper addresses the common orthopedic trauma of spinal vertebral fractures and aims to enhance doctors’ diagnostic efficiency. Therefore, a deep-learning-based automated diagnostic system with multi-label segmentation is proposed to recognize the condition of vertebral fractures. The whole spine Computed Tomography (CT) image is segmented into the fracture, normal, and background using U-Net, and the fracture degree of each vertebra is evaluated (Genant semi-qualitative evaluation). The main work of this paper includes: First, based on the spatial configuration network (SCN) structure, U-Net is used instead of the SCN feature extraction network. The attention mechanism and the residual connection between the… More >

  • Open Access

    ARTICLE

    Analyze the Performance of Electroactive Anticorrosion Coating of Medical Magnesium Alloy Using Deep Learning

    Yashan Feng1, Yafang Tian1, Yongxin Yang1, Yufang Zhang1, Haiwei Guo1, Jing’an Li2,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 263-278, 2024, DOI:10.32604/cmc.2024.047004

    Abstract Electroactive anticorrosion coatings are specialized surface treatments that prevent or minimize corrosion. The study employs strategic thermodynamic equilibrium calculations to pioneer a novel factor in corrosion protection. A first-time proposal, the total acidity (TA) potential of the hydrogen (pH) concept significantly shapes medical magnesium alloys. These coatings are meticulously designed for robust corrosion resistance, blending theoretical insights and practical applications to enhance our grasp of corrosion prevention mechanisms and establish a systematic approach to coating design. The groundbreaking significance of this study lies in its innovative integration of the TA/pH concept, which encompasses the TA/pH ratio of the chemical environment.… More >

  • Open Access

    ARTICLE

    MIDNet: Deblurring Network for Material Microstructure Images

    Jiaxiang Wang1, Zhengyi Li1, Peng Shi1, Hongying Yu2, Dongbai Sun1,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1187-1204, 2024, DOI:10.32604/cmc.2024.046929

    Abstract Scanning electron microscopy (SEM) is a crucial tool in the field of materials science, providing valuable insights into the microstructural characteristics of materials. Unfortunately, SEM images often suffer from blurriness caused by improper hardware calibration or imaging automation errors, which present challenges in analyzing and interpreting material characteristics. Consequently, rectifying the blurring of these images assumes paramount significance to enable subsequent analysis. To address this issue, we introduce a Material Images Deblurring Network (MIDNet) built upon the foundation of the Nonlinear Activation Free Network (NAFNet). MIDNet is meticulously tailored to address the blurring in images capturing the microstructure of materials.… More >

  • Open Access

    ARTICLE

    Detection of Student Engagement in E-Learning Environments Using EfficientnetV2-L Together with RNN-Based Models

    Farhad Mortezapour Shiri1,*, Ehsan Ahmadi2, Mohammadreza Rezaee1, Thinagaran Perumal1

    Journal on Artificial Intelligence, Vol.6, pp. 85-103, 2024, DOI:10.32604/jai.2024.048911

    Abstract Automatic detection of student engagement levels from videos, which is a spatio-temporal classification problem is crucial for enhancing the quality of online education. This paper addresses this challenge by proposing four novel hybrid end-to-end deep learning models designed for the automatic detection of student engagement levels in e-learning videos. The evaluation of these models utilizes the DAiSEE dataset, a public repository capturing student affective states in e-learning scenarios. The initial model integrates EfficientNetV2-L with Gated Recurrent Unit (GRU) and attains an accuracy of 61.45%. Subsequently, the second model combines EfficientNetV2-L with bidirectional GRU (Bi-GRU), yielding an accuracy of 61.56%. The… More >

  • Open Access

    ARTICLE

    A Deep Learning Model for Insurance Claims Predictions

    Umar Isa Abdulkadir*, Anil Fernando*

    Journal on Artificial Intelligence, Vol.6, pp. 71-83, 2024, DOI:10.32604/jai.2024.045332

    Abstract One of the significant issues the insurance industry faces is its ability to predict future claims related to individual policyholders. As risk varies from one policyholder to another, the industry has faced the challenge of using various risk factors to accurately predict the likelihood of claims by policyholders using historical data. Traditional machine-learning models that use neural networks are recognized as exceptional algorithms with predictive capabilities. This study aims to develop a deep learning model using sequential deep regression techniques for insurance claim prediction using historical data obtained from Kaggle with 1339 cases and eight variables. This study adopted a… More >

  • Open Access

    ARTICLE

    A Hand Features Based Fusion Recognition Network with Enhancing Multi-Modal Correlation

    Wei Wu*, Yuan Zhang, Yunpeng Li, Chuanyang Li, Yan Hao

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 537-555, 2024, DOI:10.32604/cmes.2024.049174

    Abstract Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities. Additionally, it leverages inter-modal correlation to enhance recognition performance. Concurrently, the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features. Nevertheless, two issues persist in multi-modal feature fusion recognition: Firstly, the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities. Secondly, during modal fusion, improper weight selection diminishes the salience of crucial modal features, thereby diminishing the overall recognition performance. To address these two issues, we introduce an enhanced DenseNet multimodal recognition network… More > Graphic Abstract

    A Hand Features Based Fusion Recognition Network with Enhancing Multi-Modal Correlation

  • Open Access

    ARTICLE

    Enhancing Ulcerative Colitis Diagnosis: A Multi-Level Classification Approach with Deep Learning

    Hasan J. Alyamani*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1129-1142, 2024, DOI:10.32604/cmes.2024.047756

    Abstract The evaluation of disease severity through endoscopy is pivotal in managing patients with ulcerative colitis, a condition with significant clinical implications. However, endoscopic assessment is susceptible to inherent variations, both within and between observers, compromising the reliability of individual evaluations. This study addresses this challenge by harnessing deep learning to develop a robust model capable of discerning discrete levels of endoscopic disease severity. To initiate this endeavor, a multi-faceted approach is embarked upon. The dataset is meticulously preprocessed, enhancing the quality and discriminative features of the images through contrast limited adaptive histogram equalization (CLAHE). A diverse array of data augmentation… More > Graphic Abstract

    Enhancing Ulcerative Colitis Diagnosis: A Multi-Level Classification Approach with Deep Learning

Displaying 11-20 on page 2 of 1417. Per Page