Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,637)
  • Open Access

    ARTICLE

    Selective Cancellable Multi-Biometric Template Generation Scheme Based on Multi-Exposure Feature Fusion

    Ahmed M. Ayoup1,*, Ashraf A. M. Khalaf1, Fahad Alraddady2, Fathi E. Abd El-Samie3, Walid El-Safai3,5, Salwa M. Serag Eldin2,4

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 549-565, 2022, DOI:10.32604/iasc.2022.024379 - 05 January 2022

    Abstract This article introduces a new cancellable multi-biometric system based on the combination of a selective encryption method and a deep-learning-based fusion technology. The biometric face image is treated with an automatic face segmentation algorithm (Viola-Jones), and the image of the selected eye is XORed with a PRNG (Pseudo Random Number Generator) matrix. The output array is used to create a primary biometric template. This process changes the histogram of the selected eye image. Arnold’s Cat Map is used to superimpose the PRN pixels only on the pixels of the primary image. Arnold’s cat map deformed… More >

  • Open Access

    ARTICLE

    Federated Learning for Privacy-Preserved Medical Internet of Things

    Navod Neranjan Thilakarathne1, G. Muneeswari2, V. Parthasarathy3, Fawaz Alassery4, Habib Hamam5, Rakesh Kumar Mahendran6, Muhammad Shafiq7,*

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 157-172, 2022, DOI:10.32604/iasc.2022.023763 - 05 January 2022

    Abstract Healthcare is one of the notable areas where the integration of the Internet of Things (IoT) is highly adopted, also known as the Medical IoT (MIoT). So far, MIoT is revolutionizing healthcare because it provides many advantages for the benefit of patients and healthcare personnel. The use of MIoT is becoming a booming trend, generating a large amount of IoT data, which requires proper analysis to infer meaningful information. This has led to the rise of deploying artificial intelligence (AI) technologies, such as machine learning (ML) and deep learning (DL) algorithms, to learn the meaning… More >

  • Open Access

    ARTICLE

    Face Recognition System Using Deep Belief Network and Particle Swarm Optimization

    K. Babu1,*, C. Kumar2, C. Kannaiyaraju3

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 317-329, 2022, DOI:10.32604/iasc.2022.023756 - 05 January 2022

    Abstract Facial expression for different emotional feelings makes it interesting for researchers to develop recognition techniques. Facial expression is the outcome of emotions they feel, behavioral acts, and the physiological condition of one’s mind. In the world of computer visions and algorithms, precise facial recognition is tough. In predicting the expression of a face, machine learning/artificial intelligence plays a significant role. The deep learning techniques are widely used in more challenging real-world problems which are highly encouraged in facial emotional analysis. In this article, we use three phases for facial expression recognition techniques. The principal component… More >

  • Open Access

    ARTICLE

    Multi-Domain Deep Convolutional Neural Network for Ancient Urdu Text Recognition System

    K. O. Mohammed Aarif1,*, P. Sivakumar2

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 275-289, 2022, DOI:10.32604/iasc.2022.022805 - 05 January 2022

    Abstract Deep learning has achieved magnificent success in the field of pattern recognition. In recent years Urdu character recognition system has significantly benefited from the effectiveness of the deep convolutional neural network. Majority of the research on Urdu text recognition are concentrated on formal handwritten and printed Urdu text document. In this paper, we experimented the Challenging issue of text recognition in Urdu ancient literature documents. Due to its cursiveness, complex word formation (ligatures), and context-sensitivity, and inadequate benchmark dataset, recognition of Urdu text from the literature document is very difficult to process compared to the… More >

  • Open Access

    ARTICLE

    Social Networks Fake Account and Fake News Identification with Reliable Deep Learning

    N. Kanagavalli1,*, S. Baghavathi Priya2

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 191-205, 2022, DOI:10.32604/iasc.2022.022720 - 05 January 2022

    Abstract Recent developments of the World Wide Web (WWW) and social networking (Twitter, Instagram, etc.) paves way for data sharing which has never been observed in the human history before. A major security issue in this network is the creation of fake accounts. In addition, the automatic classification of the text article as true or fake is also a crucial process. The ineffectiveness of humans in distinguishing the true and false information exposes the fake news as a risk to credibility, democracy, logical truth, and journalism in government sectors. Besides, the automatic fake news or rumors… More >

  • Open Access

    ARTICLE

    Multi-Model CNN-RNN-LSTM Based Fruit Recognition and Classification

    Harmandeep Singh Gill1,*, Osamah Ibrahim Khalaf2, Youseef Alotaibi3, Saleh Alghamdi4, Fawaz Alassery5

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 637-650, 2022, DOI:10.32604/iasc.2022.022589 - 05 January 2022

    Abstract Contemporary vision and pattern recognition issues such as image, face, fingerprint identification, and recognition, DNA sequencing, often have a large number of properties and classes. To handle such types of complex problems, one type of feature descriptor is not enough. To overcome these issues, this paper proposed a multi-model recognition and classification strategy using multi-feature fusion approaches. One of the growing topics in computer and machine vision is fruit and vegetable identification and categorization. A fruit identification system may be employed to assist customers and purchasers in identifying the species and quality of fruit. Using More >

  • Open Access

    ARTICLE

    A Novel Hybrid Deep Learning Framework for Intrusion Detection Systems in WSN-IoT Networks

    M. Maheswari1,2,*, R. A. Karthika1

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 365-382, 2022, DOI:10.32604/iasc.2022.022259 - 05 January 2022

    Abstract With the advent of wireless communication and digital technology, low power, Internet-enabled, and reconfigurable wireless devices have been developed, which revolutionized day-to-day human life and the economy across the globe. These devices are realized by leveraging the features of sensing, processing the data and nodes communications. The scale of Internet-enabled wireless devices has increased daily, and these devices are exposed to various cyber-attacks. Since the complexity and dynamics of the attacks on the devices are computationally high, intelligent, scalable and high-speed intrusion detection systems (IDS) are required. Moreover, the wireless devices are battery-driven; implementing them… More >

  • Open Access

    ARTICLE

    Deep Embedded Fuzzy Clustering Model for Collaborative Filtering Recommender System

    Adel Binbusayyis*

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 501-513, 2022, DOI:10.32604/iasc.2022.022239 - 05 January 2022

    Abstract The increasing user of Internet has witnessed a continued exploration in applications and services that can bring more convenience in people's life than ever before. At the same time, with the exploration of online services, the people face unprecedented difficulty in selecting the most relevant service on the fly. In this context, the need for recommendation system is of paramount importance especially in helping the users to improve their experience with best value-added service. But, most of the traditional techniques including collaborative filtering (CF) which is one of the most successful recommendation technique suffer from… More >

  • Open Access

    ARTICLE

    Bidirectional Long Short-Term Memory Network for Taxonomic Classification

    Naglaa. F. Soliman1,*, Samia M. Abd Alhalem2, Walid El-Shafai2, Salah Eldin S. E. Abdulrahman3, N. Ismaiel3, El-Sayed M. El-Rabaie2, Abeer D. Algarni1, Fatimah Algarni4, Fathi E. Abd El-Samie1,2

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 103-116, 2022, DOI:10.32604/iasc.2022.017691 - 05 January 2022

    Abstract Identifying and classifying Deoxyribonucleic Acid (DNA) sequences and their functions have been considered as the main challenges in bioinformatics. Advances in machine learning and Deep Learning (DL) techniques are expected to improve DNA sequence classification. Since the DNA sequence classification depends on analyzing textual data, Bidirectional Long Short-Term Memory (BLSTM) algorithms are suitable for tackling this task. Generally, classifiers depend on the patterns to be processed and the pre-processing method. This paper is concerned with a new proposed classification framework based on Frequency Chaos Game Representation (FCGR) followed by Discrete Wavelet Transform (DWT) and BLSTM.… More >

  • Open Access

    ARTICLE

    Modified Visual Geometric Group Architecture for MRI Brain Image Classification

    N. Veni*, J. Manjula

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 825-835, 2022, DOI:10.32604/csse.2022.022318 - 04 January 2022

    Abstract The advancement of automated medical diagnosis in biomedical engineering has become an important area of research. Image classification is one of the diagnostic approaches that do not require segmentation which can draw quicker inferences. The proposed non-invasive diagnostic support system in this study is considered as an image classification system where the given brain image is classified as normal or abnormal. The ability of deep learning allows a single model for feature extraction as well as classification whereas the rational models require separate models. One of the best models for image localization and classification is More >

Displaying 1191-1200 on page 120 of 1637. Per Page