Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,446)
  • Open Access

    ARTICLE

    Adversarial Examples Generation Algorithm through DCGAN

    Biying Deng1, Ziyong Ran1, Jixin Chen1, Desheng Zheng1,*, Qiao Yang2, Lulu Tian3

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 889-898, 2021, DOI:10.32604/iasc.2021.019727

    Abstract In recent years, due to the popularization of deep learning technology, more and more attention has been paid to the security of deep neural networks. A wide variety of machine learning algorithms can attack neural networks and make its classification and judgement of target samples wrong. However, the previous attack algorithms are based on the calculation of the corresponding model to generate unique adversarial examples, and cannot extract attack features and generate corresponding samples in batches. In this paper, Generative Adversarial Networks (GAN) is used to learn the distribution of adversarial examples generated by FGSM and establish a generation model,… More >

  • Open Access

    ARTICLE

    Performance Comparison of PoseNet Models on an AIoT Edge Device

    Min-Jun Kim1, Seng-Phil Hong2, Mingoo Kang1, Jeongwook Seo1,*

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 743-753, 2021, DOI:10.32604/iasc.2021.019329

    Abstract In this paper, we present an oneM2M-compliant system including an artificial intelligence of things (AIoT) edge device whose principal function is to estimate human poses by using two PoseNet models built on MobileNet v1 and ResNet-50 backbone architectures. Although MobileNet v1 is generally known to be much faster but less accurate than ResNet50, it is necessary to analyze the performances of whole PoseNet models carefully and select one of them suitable for the AIoT edge device. For this reason, we first investigate the computational complexity of the models about their neural network layers and parameters and then compare their performances… More >

  • Open Access

    ARTICLE

    Predicting the Breed of Dogs and Cats with Fine-Tuned Keras Applications

    I.-Hung Wang1, Mahardi2, Kuang-Chyi Lee2,*, Shinn-Liang Chang1

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 995-1005, 2021, DOI:10.32604/iasc.2021.019020

    Abstract The images classification is one of the most common applications of deep learning. Images of dogs and cats are mostly used as examples for image classification models, as they are relatively easy for the human eyes to recognize. However, classifying the breed of a dog or a cat has its own complexity. In this paper, a fine-tuned pre-trained model of a Keras’ application was built with a new dataset of dogs and cats to predict the breed of identified dogs or cats. Keras applications are deep learning models, which have been previously trained with general image datasets from ImageNet. In… More >

  • Open Access

    ARTICLE

    Semisupervised Encrypted Traffic Identification Based on Auxiliary Classification Generative Adversarial Network

    Jiaming Mao1,*, Mingming Zhang1, Mu Chen2, Lu Chen2, Fei Xia1, Lei Fan1, ZiXuan Wang3, Wenbing Zhao4

    Computer Systems Science and Engineering, Vol.39, No.3, pp. 373-390, 2021, DOI:10.32604/csse.2021.018086

    Abstract The rapidly increasing popularity of mobile devices has changed the methods with which people access various network services and increased network traffic markedly. Over the past few decades, network traffic identification has been a research hotspot in the field of network management and security monitoring. However, as more network services use encryption technology, network traffic identification faces many challenges. Although classic machine learning methods can solve many problems that cannot be solved by port- and payload-based methods, manually extract features that are frequently updated is time-consuming and labor-intensive. Deep learning has good automatic feature learning capabilities and is an ideal… More >

  • Open Access

    ARTICLE

    Morphological Feature Aware Multi-CNN Model for Multilingual Text Recognition

    Yujie Zhou1, Jin Liu1,*, Yurong Xie1, Y. Ken Wang2

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 715-733, 2021, DOI:10.32604/iasc.2021.020184

    Abstract Text recognition is a crucial and challenging task, which aims at translating a cropped text instance image into a target string sequence. Recently, Convolutional neural networks (CNN) have been widely used in text recognition tasks as it can effectively capture semantic and structural information in text. However, most existing methods are usually based on contextual clues. If only recognize a single character, the accuracy of these approaches can be reduced. For example, it is difficult to distinguish 0 and O in the traditional CNN network because they are very similar in composition and structure. To solve this problem, we propose… More >

  • Open Access

    ARTICLE

    Method of Bidirectional LSTM Modelling for the Atmospheric Temperature

    Shuo Liang1, Dingcheng Wang1,*, Jingrong Wu1, Rui Wang1, Ruiqi Wang2

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 701-714, 2021, DOI:10.32604/iasc.2021.020010

    Abstract Atmospheric temperature forecast plays an important role in weather forecast and has a significant impact on human daily and economic life. However, due to the complexity and uncertainty of the atmospheric system, exploring advanced forecasting methods to improve the accuracy of meteorological prediction has always been a research topic for scientists. With the continuous improvement of computer performance and data acquisition technology, meteorological data has gained explosive growth, which creates the necessary hardware support conditions for more accurate weather forecast. The more accurate forecast results need advanced weather forecast methods suitable for hardware. Therefore, this paper proposes a deep learning… More >

  • Open Access

    ARTICLE

    CT Segmentation of Liver and Tumors Fused Multi-Scale Features

    Aihong Yu1, Zhe Liu1,*, Victor S. Sheng2, Yuqing Song1, Xuesheng Liu3, Chongya Ma4, Wenqiang Wang1, Cong Ma1

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 589-599, 2021, DOI:10.32604/iasc.2021.019513

    Abstract Liver cancer is one of frequent causes of death from malignancy in the world. Owing to the outstanding advantages of computer-aided diagnosis and deep learning, fully automatic segmentation of computed tomography (CT) images turned into a research hotspot over the years. The liver has quite low contrast with the surrounding tissues, together with its lesion areas are thoroughly complex. To deal with these problems, we proposed effective methods for enhancing features and processed public datasets from Liver Tumor Segmentation Challenge (LITS) for the verification. In this experiment, data pre-processing based on the image enhancement and noise reduction. This study redesigned… More >

  • Open Access

    ARTICLE

    A Step-Based Deep Learning Approach for Network Intrusion Detection

    Yanyan Zhang1, Xiangjin Ran2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1231-1245, 2021, DOI:10.32604/cmes.2021.016866

    Abstract In the network security field, the network intrusion detection system (NIDS) is considered one of the critical issues in the detection accuracy and missed detection rate. In this paper, a method of two-step network intrusion detection on the basis of GoogLeNet Inception and deep convolutional neural networks (CNNs) models is proposed. The proposed method used the GoogLeNet Inception model to identify the network packets’ binary problem. Subsequently, the characteristics of the packets’ raw data and the traffic features are extracted. The CNNs model is also used to identify the multiclass intrusions by the network packets’ features. In the experimental results,… More >

  • Open Access

    ARTICLE

    An Improved Data-Driven Topology Optimization Method Using Feature Pyramid Networks with Physical Constraints

    Jiaxiang Luo1,2, Yu Li2, Weien Zhou2, Zhiqiang Gong2, Zeyu Zhang1, Wen Yao2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 823-848, 2021, DOI:10.32604/cmes.2021.016737

    Abstract Deep learning for topology optimization has been extensively studied to reduce the cost of calculation in recent years. However, the loss function of the above method is mainly based on pixel-wise errors from the image perspective, which cannot embed the physical knowledge of topology optimization. Therefore, this paper presents an improved deep learning model to alleviate the above difficulty effectively. The feature pyramid network (FPN), a kind of deep learning model, is trained to learn the inherent physical law of topology optimization itself, of which the loss function is composed of pixel-wise errors and physical constraints. Since the calculation of… More >

  • Open Access

    ARTICLE

    Adaptive Multi-Scale HyperNet with Bi-Direction Residual Attention Module for Scene Text Detection

    Junjie Qu, Jin Liu*, Chao Yu

    Journal of Information Hiding and Privacy Protection, Vol.3, No.2, pp. 83-89, 2021, DOI:10.32604/jihpp.2021.017181

    Abstract Scene text detection is an important step in the scene text reading system. There are still two problems during the existing text detection methods: (1) The small receptive of the convolutional layer in text detection is not sufficiently sensitive to the target area in the image; (2) The deep receptive of the convolutional layer in text detection lose a lot of spatial feature information. Therefore, detecting scene text remains a challenging issue. In this work, we design an effective text detector named Adaptive Multi-Scale HyperNet (AMSHN) to improve texts detection performance. Specifically, AMSHN enhances the sensitivity of target semantics in… More >

Displaying 1191-1200 on page 120 of 1446. Per Page