Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,399)
  • Open Access

    ARTICLE

    Data Matching of Solar Images Super-Resolution Based on Deep Learning

    Liu Xiangchun1, Chen Zhan1, Song Wei1,2,3,*, Li Fenglei1, Yang Yanxing4

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 4017-4029, 2021, DOI:10.32604/cmc.2021.017086

    Abstract The images captured by different observation station have different resolutions. The Helioseismic and Magnetic Imager (HMI: a part of the NASA Solar Dynamics Observatory (SDO) has low-precision but wide coverage. And the Goode Solar Telescope (GST, formerly known as the New Solar Telescope) at Big Bear Solar Observatory (BBSO) solar images has high precision but small coverage. The super-resolution can make the captured images become clearer, so it is wildly used in solar image processing. The traditional super-resolution methods, such as interpolation, often use single image’s feature to improve the image’s quality. The methods based on deep learning-based super-resolution image… More >

  • Open Access

    ARTICLE

    Enhanced Accuracy for Motor Imagery Detection Using Deep Learning for BCI

    Ayesha Sarwar1, Kashif Javed1, Muhammad Jawad Khan1, Saddaf Rubab1, Oh-Young Song2,*, Usman Tariq3

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3825-3840, 2021, DOI:10.32604/cmc.2021.016893

    Abstract Brain-Computer Interface (BCI) is a system that provides a link between the brain of humans and the hardware directly. The recorded brain data is converted directly to the machine that can be used to control external devices. There are four major components of the BCI system: acquiring signals, preprocessing of acquired signals, features extraction, and classification. In traditional machine learning algorithms, the accuracy is insignificant and not up to the mark for the classification of multi-class motor imagery data. The major reason for this is, features are selected manually, and we are not able to get those features that give… More >

  • Open Access

    ARTICLE

    An Optimal Big Data Analytics with Concept Drift Detection on High-Dimensional Streaming Data

    Romany F. Mansour1,*, Shaha Al-Otaibi2, Amal Al-Rasheed2, Hanan Aljuaid3, Irina V. Pustokhina4, Denis A. Pustokhin5

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 2843-2858, 2021, DOI:10.32604/cmc.2021.016626

    Abstract Big data streams started becoming ubiquitous in recent years, thanks to rapid generation of massive volumes of data by different applications. It is challenging to apply existing data mining tools and techniques directly in these big data streams. At the same time, streaming data from several applications results in two major problems such as class imbalance and concept drift. The current research paper presents a new Multi-Objective Metaheuristic Optimization-based Big Data Analytics with Concept Drift Detection (MOMBD-CDD) method on High-Dimensional Streaming Data. The presented MOMBD-CDD model has different operational stages such as pre-processing, CDD, and classification. MOMBD-CDD model overcomes class… More >

  • Open Access

    ARTICLE

    Race Classification Using Deep Learning

    Khalil Khan1, Rehan Ullah Khan2, Jehad Ali3, Irfan Uddin4, Sahib Khan5, Byeong-hee Roh3,*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3483-3498, 2021, DOI:10.32604/cmc.2021.016535

    Abstract Race classification is a long-standing challenge in the field of face image analysis. The investigation of salient facial features is an important task to avoid processing all face parts. Face segmentation strongly benefits several face analysis tasks, including ethnicity and race classification. We propose a race-classification algorithm using a prior face segmentation framework. A deep convolutional neural network (DCNN) was used to construct a face segmentation model. For training the DCNN, we label face images according to seven different classes, that is, nose, skin, hair, eyes, brows, back, and mouth. The DCNN model developed in the first phase was used… More >

  • Open Access

    ARTICLE

    Extended Forgery Detection Framework for COVID-19 Medical Data Using Convolutional Neural Network

    Sajid Habib Gill1, Noor Ahmed Sheikh1, Samina Rajpar1, Zain ul Abidin2, N. Z. Jhanjhi3,*, Muneer Ahmad4, Mirza Abdur Razzaq1, Sultan S. Alshamrani5, Yasir Malik6, Fehmi Jaafar7

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3773-3787, 2021, DOI:10.32604/cmc.2021.016001

    Abstract Medical data tampering has become one of the main challenges in the field of secure-aware medical data processing. Forgery of normal patients’ medical data to present them as COVID-19 patients is an illegitimate action that has been carried out in different ways recently. Therefore, the integrity of these data can be questionable. Forgery detection is a method of detecting an anomaly in manipulated forged data. An appropriate number of features are needed to identify an anomaly as either forged or non-forged data in order to find distortion or tampering in the original data. Convolutional neural networks (CNNs) have contributed a… More >

  • Open Access

    ARTICLE

    Multi-Modal Data Analysis Based Game Player Experience Modeling Using LSTM-DNN

    Sehar Shahzad Farooq1, Mustansar Fiaz1, Irfan Mehmood2, Ali Kashif Bashir3, Raheel Nawaz4, KyungJoong Kim5, Soon Ki Jung1,*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 4087-4108, 2021, DOI:10.32604/cmc.2021.015612

    Abstract Game player modeling is a paradigm of computational models to exploit players’ behavior and experience using game and player analytics. Player modeling refers to descriptions of players based on frameworks of data derived from the interaction of a player’s behavior within the game as well as the player’s experience with the game. Player behavior focuses on dynamic and static information gathered at the time of gameplay. Player experience concerns the association of the human player during gameplay, which is based on cognitive and affective physiological measurements collected from sensors mounted on the player’s body or in the player’s surroundings. In… More >

  • Open Access

    ARTICLE

    Deep Learning for Object Detection: A Survey

    Jun Wang1, Tingjuan Zhang2,*, Yong Cheng3, Najla Al-Nabhan4

    Computer Systems Science and Engineering, Vol.38, No.2, pp. 165-182, 2021, DOI:10.32604/csse.2021.017016

    Abstract Object detection is one of the most important and challenging branches of computer vision, which has been widely applied in people s life, such as monitoring security, autonomous driving and so on, with the purpose of locating instances of semantic objects of a certain class. With the rapid development of deep learning algorithms for detection tasks, the performance of object detectors has been greatly improved. In order to understand the main development status of target detection, a comprehensive literature review of target detection and an overall discussion of the works closely related to it are presented in this paper. This… More >

  • Open Access

    ARTICLE

    Leveraging Graph Cut’s Energy Function for Context Aware Facial Recognition in Indoor Environments

    Kazeem Oyebode1, Shengzhi Du2,*, Barend Jacobus van Wyk3

    Computer Systems Science and Engineering, Vol.38, No.2, pp. 229-238, 2021, DOI:10.32604/csse.2021.015372

    Abstract Context-aware facial recognition regards the recognition of faces in association with their respective environments. This concept is useful for the domestic robot which interacts with humans when performing specific functions in indoor environments. Deep learning models have been relevant in solving facial and place recognition challenges; however, they require the procurement of training images for optimal performance. Pre-trained models have also been offered to reduce training time significantly. Regardless, for classification tasks, custom data must be acquired to ensure that learning models are developed from other pre-trained models. This paper proposes a place recognition model that is inspired by the… More >

  • Open Access

    REVIEW

    Survey on the Loss Function of Deep Learning in Face Recognition

    Jun Wang1, Suncheng Feng2,*, Yong Cheng3, Najla Al-Nabhan4

    Journal of Information Hiding and Privacy Protection, Vol.3, No.1, pp. 29-45, 2021, DOI:10.32604/jihpp.2021.016835

    Abstract With the continuous development of face recognition network, the selection of loss function plays an increasingly important role in improving accuracy. The loss function of face recognition network needs to minimize the intra-class distance while expanding the inter-class distance. So far, one of our mainstream loss function optimization methods is to add penalty terms, such as orthogonal loss, to further constrain the original loss function. The other is to optimize using the loss based on angular/cosine margin. The last is Triplet loss and a new type of joint optimization based on HST Loss and ACT Loss. In this paper, based… More >

  • Open Access

    ARTICLE

    Improved Model of Eye Disease Recognition Based on VGG Model

    Ye Mu1,2,3,4, Yuheng Sun1, Tianli Hu1,2,3,4, He Gong1,2,3,4, Shijun Li1,2,3,4,*, Thobela Louis Tyasi5

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 729-737, 2021, DOI:10.32604/iasc.2021.016569

    Abstract The rapid development of computer vision technology and digital images has increased the potential for using image recognition for eye disease diagnosis. Many early screening and diagnosis methods for ocular diseases based on retinal images of the fundus have been proposed recently, but their accuracy is low. Therefore, it is important to develop and evaluate an improved VGG model for the recognition and classification of retinal fundus images. In response to these challenges, to solve the problem of accuracy and reliability of clinical algorithms in medical imaging this paper proposes an improved model for early recognition of ophthalmopathy in retinal… More >

Displaying 1201-1210 on page 121 of 1399. Per Page