Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,394)
  • Open Access

    ARTICLE

    Brain Cancer Tumor Classification from Motion-Corrected MRI Images Using Convolutional Neural Network

    Hanan Abdullah Mengash1,*, Hanan A. Hosni Mahmoud2,3

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1551-1563, 2021, DOI:10.32604/cmc.2021.016907

    Abstract Detection of brain tumors in MRI images is the first step in brain cancer diagnosis. The accuracy of the diagnosis depends highly on the expertise of radiologists. Therefore, automated diagnosis of brain cancer from MRI is receiving a large amount of attention. Also, MRI tumor detection is usually followed by a biopsy (an invasive procedure), which is a medical procedure for brain tumor classification. It is of high importance to devise automated methods to aid radiologists in brain cancer tumor diagnosis without resorting to invasive procedures. Convolutional neural network (CNN) is deemed to be one of the best machine learning… More >

  • Open Access

    ARTICLE

    An Optimal Classification Model for Rice Plant Disease Detection

    R. Sowmyalakshmi1, T. Jayasankar1,*, V. Ayyem Pillai2, Kamalraj Subramaniyan3, Irina V. Pustokhina4, Denis A. Pustokhin5, K. Shankar6

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1751-1767, 2021, DOI:10.32604/cmc.2021.016825

    Abstract Internet of Things (IoT) paves a new direction in the domain of smart farming and precision agriculture. Smart farming is an upgraded version of agriculture which is aimed at improving the cultivation practices and yield to a certain extent. In smart farming, IoT devices are linked among one another with new technologies to improve the agricultural practices. Smart farming makes use of IoT devices and contributes in effective decision making. Rice is the major food source in most of the countries. So, it becomes inevitable to detect rice plant diseases during early stages with the help of automated tools and… More >

  • Open Access

    ARTICLE

    Early Tumor Diagnosis in Brain MR Images via Deep Convolutional Neural Network Model

    Tapan Kumar Das1, Pradeep Kumar Roy2, Mohy Uddin3, Kathiravan Srinivasan1, Chuan-Yu Chang4,*, Shabbir Syed-Abdul5

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2413-2429, 2021, DOI:10.32604/cmc.2021.016698

    Abstract Machine learning based image analysis for predicting and diagnosing certain diseases has been entirely trustworthy and even as efficient as a domain expert’s inspection. However, the style of non-transparency functioning by a trained machine learning system poses a more significant impediment for seamless knowledge trajectory, clinical mapping, and delusion tracing. In this proposed study, a deep learning based framework that employs deep convolution neural network (Deep-CNN), by utilizing both clinical presentations and conventional magnetic resonance imaging (MRI) investigations, for diagnosing tumors is explored. This research aims to develop a model that can be used for abnormality detection over MRI data… More >

  • Open Access

    ARTICLE

    Ensembling Neural Networks for User’s Indoor Localization Using Magnetic Field Data from Smartphones

    Imran Ashraf, Soojung Hur, Yousaf Bin Zikria, Yongwan Park*

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2597-2620, 2021, DOI:10.32604/cmc.2021.016214

    Abstract Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors: Smartphone heterogeneity and smaller data lengths. The use of multifarious smartphones cripples the performance of such approaches owing to the variability of the magnetic field data. In the same vein, smaller lengths of magnetic field data decrease the localization accuracy substantially. The current study proposes the use of multiple neural networks like deep neural network (DNN), long short term memory network (LSTM), and gated recurrent unit network (GRN) to perform indoor localization based on the embedded magnetic sensor of the smartphone. A voting scheme… More >

  • Open Access

    ARTICLE

    Ozone Depletion Identification in Stratosphere Through Faster Region-Based Convolutional Neural Network

    Bakhtawar Aslam1, Ziyad Awadh Alrowaili2, Bushra Khaliq1, Jaweria Manzoor1, Saira Raqeeb1, Fahad Ahmad3,*

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2159-2178, 2021, DOI:10.32604/cmc.2021.015922

    Abstract The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place in physical systems over time and effect substantially. This study has made ozone depletion identification through classification using Faster Region-Based Convolutional Neural Network (F-RCNN). The main advantage of F-RCNN is to accumulate the bounding boxes on images to differentiate the depleted and non-depleted regions. Furthermore, image classification’s primary goal is to accurately predict each minutely varied case’s targeted classes in the dataset based on ozone saturation. The permanent changes in… More >

  • Open Access

    ARTICLE

    Gastric Tract Disease Recognition Using Optimized Deep Learning Features

    Zainab Nayyar1, Muhammad Attique Khan1, Musaed Alhussein2, Muhammad Nazir1, Khursheed Aurangzeb2, Yunyoung Nam3,*, Seifedine Kadry4, Syed Irtaza Haider2

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2041-2056, 2021, DOI:10.32604/cmc.2021.015916

    Abstract Artificial intelligence aids for healthcare have received a great deal of attention. Approximately one million patients with gastrointestinal diseases have been diagnosed via wireless capsule endoscopy (WCE). Early diagnosis facilitates appropriate treatment and saves lives. Deep learning-based techniques have been used to identify gastrointestinal ulcers, bleeding sites, and polyps. However, small lesions may be misclassified. We developed a deep learning-based best-feature method to classify various stomach diseases evident in WCE images. Initially, we use hybrid contrast enhancement to distinguish diseased from normal regions. Then, a pretrained model is fine-tuned, and further training is done via transfer learning. Deep features are… More >

  • Open Access

    ARTICLE

    Quranic Script Optical Text Recognition Using Deep Learning in IoT Systems

    Mahmoud Badry1,*, Mohammed Hassanin1,2, Asghar Chandio2,3, Nour Moustafa2

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1847-1858, 2021, DOI:10.32604/cmc.2021.015489

    Abstract Since the worldwide spread of internet-connected devices and rapid advances made in Internet of Things (IoT) systems, much research has been done in using machine learning methods to recognize IoT sensors data. This is particularly the case for optical character recognition of handwritten scripts. Recognizing text in images has several useful applications, including content-based image retrieval, searching and document archiving. The Arabic language is one of the mostly used tongues in the world. However, Arabic text recognition in imagery is still very much in the nascent stage, especially handwritten text. This is mainly due to the language complexities, different writing… More >

  • Open Access

    ARTICLE

    Spatial-Resolution Independent Object Detection Framework for Aerial Imagery

    Sidharth Samanta1, Mrutyunjaya Panda1, Somula Ramasubbareddy2, S. Sankar3, Daniel Burgos4,*

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1937-1948, 2021, DOI:10.32604/cmc.2021.014406

    Abstract Earth surveillance through aerial images allows more accurate identification and characterization of objects present on the surface from space and airborne platforms. The progression of deep learning and computer vision methods and the availability of heterogeneous multispectral remote sensing data make the field more fertile for research. With the evolution of optical sensors, aerial images are becoming more precise and larger, which leads to a new kind of problem for object detection algorithms. This paper proposes the “Sliding Region-based Convolutional Neural Network (SRCNN),” which is an extension of the Faster Region-based Convolutional Neural Network (RCNN) object detection framework to make… More >

  • Open Access

    ARTICLE

    A Fog Covered Object Recognition Algorithm Based On Space And Frequency Network

    Ying Cui1, Shi Qiu2,*, Tong Li3

    Intelligent Automation & Soft Computing, Vol.28, No.2, pp. 417-428, 2021, DOI:10.32604/iasc.2021.016802

    Abstract It is difficult to recognize a target object from foggy images. Aiming at solving this problem, a new algorithm is thereby proposed. Fog concentration estimation is the prerequisite for image defogging. Due to the uncertainty of fog distribution, a fog concentration estimation model is accordingly proposed. Establish the brightness and gradient model in the spatial domain, and establish the FFT model in the frequency domain. Also, a multiple branch network framework is established to realize the qualitative estimation of the fog concentration in images based on comprehensive analysis from spatial and frequency domain levels. In the aspect of foggy image… More >

  • Open Access

    ARTICLE

    AI/ML in Security Orchestration, Automation and Response: Future Research Directions

    Johnson Kinyua1, Lawrence Awuah2,*

    Intelligent Automation & Soft Computing, Vol.28, No.2, pp. 527-545, 2021, DOI:10.32604/iasc.2021.016240

    Abstract Today’s cyber defense capabilities in many organizations consist of a diversity of tools, products, and solutions, which are very challenging for Security Operations Centre (SOC) teams to manage in current advanced and dynamic cyber threat environments. Security researchers and industry practitioners have proposed security orchestration, automation, and response (SOAR) solutions designed to integrate and automate the disparate security tasks, processes, and applications in response to security incidents to empower SOC teams. The next big step for cyber threat detection, mitigation, and prevention efforts is to leverage AI/ML in SOAR solutions. AI/ML will act as a force multiplier empowering SOC analysts… More >

Displaying 1211-1220 on page 122 of 1394. Per Page