Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,394)
  • Open Access

    REVIEW

    A Survey on Recent Advances in Privacy Preserving Deep Learning

    Siran Yin1,2, Leiming Yan1,2,*, Yuanmin Shi1,2, Yaoyang Hou1,2, Yunhong Zhang1,2

    Journal of Information Hiding and Privacy Protection, Vol.2, No.4, pp. 175-185, 2020, DOI:10.32604/jihpp.2020.010780

    Abstract Deep learning based on neural networks has made new progress in a wide variety of domain, however, it is lack of protection for sensitive information. The large amount of data used for training is easy to cause leakage of private information, thus the attacker can easily restore input through the representation of latent natural language. The privacy preserving deep learning aims to solve the above problems. In this paper, first, we introduce how to reduce training samples in order to reduce the amount of sensitive information, and then describe how to unbiasedly represent the data with respect to specific attributes,… More >

  • Open Access

    ARTICLE

    Building Graduate Salary Grading Prediction Model Based on Deep Learning

    Jong-Yih Kuo*, Hui-Chi Lin, Chien-Hung Liu

    Intelligent Automation & Soft Computing, Vol.27, No.1, pp. 53-68, 2021, DOI:10.32604/iasc.2021.014437

    Abstract Predicting salary trends of students after employment is vital for helping students to develop their career plans. Particularly, salary is not only considered employment information for students to pursue jobs, but also serves as an important indicator for measuring employability and competitiveness of graduates. This paper considers salary prediction as an ordinal regression problem and uses deep learning techniques to build a salary prediction model for determining the relative ordering between different salary grades. Specifically, to solve this problem, the model uses students’ personal information, grades, and family data as input features and employs a multi-output deep neural network to… More >

  • Open Access

    ARTICLE

    Tyre Inspection through Multi-State Convolutional Neural Networks

    C. Sivamani1, M. Rajeswari2, E. Golden Julie3, Y. Harold Robinson4, Vimal Shanmuganathan5, Seifedine Kadry6, Yunyoung Nam7,*

    Intelligent Automation & Soft Computing, Vol.27, No.1, pp. 1-13, 2021, DOI:10.32604/iasc.2021.013705

    Abstract Road accident is a potential risk to the lives of both drivers and passers-by. Many road accidents occur due to the improper condition of the vehicle tyres after long term usage. Thus, tyres need to be inspected and analyzed while manufacturing to avoid serious road problems. However, tyre wear is a multifaceted happening. It normally needs the non-linearly on many limitations, like tyre formation and plan, vehicle category, conditions of the road. Yet, tyre wear has numerous profitable and environmental inferences particularly due to maintenance costs and traffic safety implications. Thus, the risk to calculate tyre wear is therefore of… More >

  • Open Access

    ARTICLE

    Reconstruction and Optimization of Complex Network Community Structure under Deep Learning and Quantum Ant Colony Optimization Algorithm

    Peng Mei1, Gangyi Ding1, Qiankun Jin1, Fuquan Zhang2,*, Yeh-Cheng Chen3

    Intelligent Automation & Soft Computing, Vol.27, No.1, pp. 159-171, 2021, DOI:10.32604/iasc.2021.012813

    Abstract Community structure is a key component in complex network systems. This paper aims to improve the effectiveness of community detection and community discovery in complex network systems by providing directions for the reconstruction and optimization of community structures to expand the application of intelligent optimization algorithms in community structures. First, deep learning algorithms and ant colony algorithms are used to elaborate the community detection and community discovery in complex networks. Next, we introduce the technology of transfer learning and propose an algorithm of deep self-encoder modeling based on transfer learning (DSEM-TL). The DSEM-TL algorithm’s indicators include normalized mutual information and… More >

  • Open Access

    ARTICLE

    Task-Oriented Battlefield Situation Information Hybrid Recommendation Model

    Chunhua Zhou*, Jianjing Shen, Xiaofeng Guo, Zhenyu Zhou

    Intelligent Automation & Soft Computing, Vol.27, No.1, pp. 127-141, 2021, DOI:10.32604/iasc.2021.012532

    Abstract In the process of interaction between users and battlefield situation information, combat tasks are the key factors that affect users’ information selection. In order to solve the problems of battlefield situation information recommendation (BSIR) for combat tasks, we propose a task-oriented battlefield situation information hybrid recommendation model (TBSI-HRM) based on tensor factorization and deep learning. In the model, in order to achieve high-precision personalized recommendations, we use Tensor Factorization (TF) to extract correlation relations and features from historical interaction data, and use Deep Neural Network (DNN) to learn hidden feature vectors of users, battlefield situation information and combat tasks from… More >

  • Open Access

    ARTICLE

    A Quantum Spatial Graph Convolutional Network for Text Classification

    Syed Mustajar Ahmad Shah1, Hongwei Ge1,*, Sami Ahmed Haider2, Muhammad Irshad3, Sohail M. Noman4, Jehangir Arshad5, Asfandeyar Ahmad6, Talha Younas7

    Computer Systems Science and Engineering, Vol.36, No.2, pp. 369-382, 2021, DOI:10.32604/csse.2021.014234

    Abstract The data generated from non-Euclidean domains and its graphical representation (with complex-relationship object interdependence) applications has observed an exponential growth. The sophistication of graph data has posed consequential obstacles to the existing machine learning algorithms. In this study, we have considered a revamped version of a semi-supervised learning algorithm for graph-structured data to address the issue of expanding deep learning approaches to represent the graph data. Additionally, the quantum information theory has been applied through Graph Neural Networks (GNNs) to generate Riemannian metrics in closed-form of several graph layers. In further, to pre-process the adjacency matrix of graphs, a new… More >

  • Open Access

    ARTICLE

    Vehicle License Plate Recognition System Based on Deep Learning in Natural Scene

    Ze Chen, Leiming Yan*, Siran Yin, Yuanmin Shi

    Journal on Artificial Intelligence, Vol.2, No.4, pp. 167-175, 2020, DOI:10.32604/jai.2020.012716

    Abstract With the popularity of intelligent transportation system, license plate recognition system has been widely used in the management of vehicles in and out of closed communities. But in the natural environment such as video monitoring, the performance and accuracy of recognition are not ideal. In this paper, the improved Alex net convolution neural network is used to remove the false license plate in a large range of suspected license plate areas, and then the projection transformation and Hough transformation are used to correct the inclined license plate, so as to build an efficient license plate recognition system in natural environment.… More >

  • Open Access

    ARTICLE

    A Survey of Knowledge Based Question Answering with Deep Learning

    Chaoyu Deng, Guangfu Zeng, Zhiping Cai, Xiaoqiang Xiao*

    Journal on Artificial Intelligence, Vol.2, No.4, pp. 157-166, 2020, DOI:10.32604/jai.2020.011541

    Abstract The purpose of automated question answering is to let the machine understand natural language questions and give accurate answers in the form of natural language. This technology requires the machine to store a large amount of background knowledge. In recent years, the rapid development of knowledge graph has made the knowledge based question answering (KBQA) more and more popular. Traditional styles of KBQA methods mainly include semantic parsing, information extraction and vector modeling. With the development of deep learning, KBQA with deep learning has gradually become the mainstream method. This paper introduces the application of deep learning in KBQA mainly… More >

  • Open Access

    ARTICLE

    Defect-Detection Model for Underground Parking Lots Using Image Object-Detection Method

    Hyun Kyu Shin1, Si Woon Lee2, Goo Pyo Hong3, Lee Sael2, Sang Hyo Lee4, Ha Young Kim5,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2493-2507, 2021, DOI:10.32604/cmc.2021.014170

    Abstract The demand for defect diagnoses is gradually gaining ground owing to the growing necessity to implement safe inspection methods to ensure the durability and quality of structures. However, conventional manpower-based inspection methods not only incur considerable cost and time, but also cause frequent disputes regarding defects owing to poor inspections. Therefore, the demand for an effective and efficient defect-diagnosis model for concrete structures is imminent, as the reduction in maintenance costs is significant from a long-term perspective. Thus, this paper proposes a deep learning-based image object-identification method to detect the defects of paint peeling, leakage peeling, and leakage traces that… More >

  • Open Access

    ARTICLE

    An Efficient False-Positive Reduction System for Cerebral Microbleeds Detection

    Sitara Afzal1, Muazzam Maqsood1,*, Irfan Mehmood2, Muhammad Tabish Niaz3, Sanghyun Seo4

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2301-2315, 2021, DOI:10.32604/cmc.2021.013966

    Abstract Cerebral Microbleeds (CMBs) are microhemorrhages caused by certain abnormalities of brain vessels. CMBs can be found in people with Traumatic Brain Injury (TBI), Alzheimer’s disease, and in old individuals having a brain injury. Current research reveals that CMBs can be highly dangerous for individuals having dementia and stroke. The CMBs seriously impact individuals’ life which makes it crucial to recognize the CMBs in its initial phase to stop deterioration and to assist individuals to have a normal life. The existing work report good results but often ignores false-positive’s perspective for this research area. In this paper, an efficient approach is… More >

Displaying 1271-1280 on page 128 of 1394. Per Page