Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,722)
  • Open Access

    ARTICLE

    Multi-Scale Image Segmentation Model for Fine-Grained Recognition of Zanthoxylum Rust

    Fan Yang1, Jie Xu1,*, Haoliang Wei1, Meng Ye2, Mingzhu Xu1, Qiuru Fu1, Lingfei Ren3, Zhengwen Huang4

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2963-2980, 2022, DOI:10.32604/cmc.2022.022810 - 07 December 2021

    Abstract Zanthoxylum bungeanum Maxim, generally called prickly ash, is widely grown in China. Zanthoxylum rust is the main disease affecting the growth and quality of Zanthoxylum. Traditional method for recognizing the degree of infection of Zanthoxylum rust mainly rely on manual experience. Due to the complex colors and shapes of rust areas, the accuracy of manual recognition is low and difficult to be quantified. In recent years, the application of artificial intelligence technology in the agricultural field has gradually increased. In this paper, based on the DeepLabV2 model, we proposed a Zanthoxylum rust image segmentation model… More >

  • Open Access

    ARTICLE

    Deep Learning Based Automated Diagnosis of Skin Diseases Using Dermoscopy

    Vatsala Anand1, Sheifali Gupta1, Deepika Koundal2,*, Shubham Mahajan3, Amit Kant Pandit3, Atef Zaguia4

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3145-3160, 2022, DOI:10.32604/cmc.2022.022788 - 07 December 2021

    Abstract Biomedical image analysis has been exploited considerably by recent technology involvements, carrying about a pattern shift towards ‘automation’ and ‘error free diagnosis’ classification methods with markedly improved accurate diagnosis productivity and cost effectiveness. This paper proposes an automated deep learning model to diagnose skin disease at an early stage by using Dermoscopy images. The proposed model has four convolutional layers, two maxpool layers, one fully connected layer and three dense layers. All the convolutional layers are using the kernel size of 3 * 3 whereas the maxpool layer is using the kernel size of 2… More >

  • Open Access

    ARTICLE

    Intelligent Classification Model for Biomedical Pap Smear Images on IoT Environment

    CSS Anupama1, T. J. Benedict Jose2, Heba F. Eid3, Nojood O Aljehane4, Fahd N. Al-Wesabi5,*, Marwa Obayya6, Anwer Mustafa Hilal7

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3969-3983, 2022, DOI:10.32604/cmc.2022.022701 - 07 December 2021

    Abstract Biomedical images are used for capturing the images for diagnosis process and to examine the present condition of organs or tissues. Biomedical image processing concepts are identical to biomedical signal processing, which includes the investigation, improvement, and exhibition of images gathered using x-ray, ultrasound, MRI, etc. At the same time, cervical cancer becomes a major reason for increased women's mortality rate. But cervical cancer is an identified at an earlier stage using regular pap smear images. In this aspect, this paper devises a new biomedical pap smear image classification using cascaded deep forest (BPSIC-CDF) model… More >

  • Open Access

    ARTICLE

    Modeling of Artificial Intelligence Based Traffic Flow Prediction with Weather Conditions

    Mesfer Al Duhayyim1, Amani Abdulrahman Albraikan2, Fahd N. Al-Wesabi3,4, Hiba M. Burbur5, Mohammad Alamgeer6, Anwer Mustafa Hilal7, Manar Ahmed Hamza7,*, Mohammed Rizwanullah7

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3953-3968, 2022, DOI:10.32604/cmc.2022.022692 - 07 December 2021

    Abstract Short-term traffic flow prediction (TFP) is an important area in intelligent transportation system (ITS), which is used to reduce traffic congestion. But the avail of traffic flow data with temporal features and periodic features are susceptible to weather conditions, making TFP a challenging issue. TFP process are significantly influenced by several factors like accident and weather. Particularly, the inclement weather conditions may have an extreme impact on travel time and traffic flow. Since most of the existing TFP techniques do not consider the impact of weather conditions on the TF, it is needed to develop… More >

  • Open Access

    ARTICLE

    An Improved DeepNN with Feature Ranking for Covid-19 Detection

    Noha E. El-Attar1,*, Sahar F. Sabbeh1,2, Heba Fasihuddin2, Wael A. Awad3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2249-2269, 2022, DOI:10.32604/cmc.2022.022673 - 07 December 2021

    Abstract The outbreak of Covid-19 has taken the lives of many patients so far. The symptoms of COVID-19 include muscle pains, loss of taste and smell, coughs, fever, and sore throat, which can lead to severe cases of breathing difficulties, organ failure, and death. Thus, the early detection of the virus is very crucial. COVID-19 can be detected using clinical tests, making us need to know the most important symptoms/features that can enhance the decision process. In this work, we propose a modified multilayer perceptron (MLP) with feature selection (MLPFS) to predict the positive COVID-19 cases… More >

  • Open Access

    ARTICLE

    Attention-Based Bi-LSTM Model for Arabic Depression Classification

    Abdulqader M. Almars*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3091-3106, 2022, DOI:10.32604/cmc.2022.022609 - 07 December 2021

    Abstract Depression is a common mental health issue that affects a large percentage of people all around the world. Usually, people who suffer from this mood disorder have issues such as low concentration, dementia, mood swings, and even suicide. A social media platform like Twitter allows people to communicate as well as share photos and videos that reflect their moods. Therefore, the analysis of social media content provides insight into individual moods, including depression. Several studies have been conducted on depression detection in English and less in Arabic. The detection of depression from Arabic social media… More >

  • Open Access

    ARTICLE

    Citrus Diseases Recognition Using Deep Improved Genetic Algorithm

    Usra Yasmeen1, Muhammad Attique Khan1, Usman Tariq2, Junaid Ali Khan1, Muhammad Asfand E. Yar3, Ch. Avais Hanif4, Senghour Mey5, Yunyoung Nam6,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3667-3684, 2022, DOI:10.32604/cmc.2022.022264 - 07 December 2021

    Abstract Agriculture is the backbone of each country, and almost 50% of the population is directly involved in farming. In Pakistan, several kinds of fruits are produced and exported the other countries. Citrus is an important fruit, and its production in Pakistan is higher than the other fruits. However, the diseases of citrus fruits such as canker, citrus scab, blight, and a few more impact the quality and quantity of this Fruit. The manual diagnosis of these diseases required an expert person who is always a time-consuming and costly procedure. In the agriculture sector, deep learning… More >

  • Open Access

    ARTICLE

    Optimization of Deep Learning Model for Plant Disease Detection Using Particle Swarm Optimizer

    Ahmed Elaraby1,*, Walid Hamdy2, Madallah Alruwaili3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 4019-4031, 2022, DOI:10.32604/cmc.2022.022161 - 07 December 2021

    Abstract Plant diseases are a major impendence to food security, and due to a lack of key infrastructure in many regions of the world, quick identification is still challenging. Harvest losses owing to illnesses are a severe problem for both large farming structures and rural communities, motivating our mission. Because of the large range of diseases, identifying and classifying diseases with human eyes is not only time-consuming and labor intensive, but also prone to being mistaken with a high error rate. Deep learning-enabled breakthroughs in computer vision have cleared the road for smartphone-assisted plant disease and… More >

  • Open Access

    ARTICLE

    BERT-CNN: A Deep Learning Model for Detecting Emotions from Text

    Ahmed R. Abas1, Ibrahim Elhenawy1, Mahinda Zidan2,*, Mahmoud Othman2

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2943-2961, 2022, DOI:10.32604/cmc.2022.021671 - 07 December 2021

    Abstract Due to the widespread usage of social media in our recent daily lifestyles, sentiment analysis becomes an important field in pattern recognition and Natural Language Processing (NLP). In this field, users’ feedback data on a specific issue are evaluated and analyzed. Detecting emotions within the text is therefore considered one of the important challenges of the current NLP research. Emotions have been widely studied in psychology and behavioral science as they are an integral part of the human nature. Emotions describe a state of mind of distinct behaviors, feelings, thoughts and experiences. The main objective… More >

  • Open Access

    ARTICLE

    A Deep Two-State Gated Recurrent Unit for Particulate Matter (PM2.5) Concentration Forecasting

    Muhammad Zulqarnain1, Rozaida Ghazali1,*, Habib Shah2, Lokman Hakim Ismail1, Abdullah Alsheddy3, Maqsood Mahmud4

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3051-3068, 2022, DOI:10.32604/cmc.2022.021629 - 07 December 2021

    Abstract Air pollution is a significant problem in modern societies since it has a serious impact on human health and the environment. Particulate Matter (PM2.5) is a type of air pollution that contains of interrupted elements with a diameter less than or equal to 2.5 m. For risk assessment and epidemiological investigations, a better knowledge of the spatiotemporal variation of PM2.5 concentration in a constant space-time area is essential. Conventional spatiotemporal interpolation approaches commonly relying on robust presumption by limiting interpolation algorithms to those with explicit and basic mathematical expression, ignoring a plethora of hidden but crucial… More >

Displaying 1301-1310 on page 131 of 1722. Per Page