Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,399)
  • Open Access


    Two Stage Classification with CNN for Colorectal Cancer Detection

    Pallabi Sharma1,*, Kangkana Bora2, Kunio Kasugai3, Bunil Kumar Balabantaray1

    Oncologie, Vol.22, No.3, pp. 129-145, 2020, DOI:10.32604/oncologie.2020.013870

    Abstract In this paper, we address a current problem in medical image processing, the detection of colorectal cancer from colonoscopy videos. According to worldwide cancer statistics, colorectal cancer is one of the most common cancers. The process of screening and the removal of pre-cancerous cells from the large intestine is a crucial task to date. The traditional manual process is dependent on the expertise of the medical practitioner. In this paper, a two-stage classification is proposed to detect colorectal cancer. In the first stage, frames of colonoscopy video are extracted and are rated as significant if it contains a polyp, and… More >

  • Open Access


    Deep Learning for Distinguishing Computer Generated Images and Natural Images: A Survey

    Bingtao Hu*, Jinwei Wang

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 95-105, 2020, DOI:10.32604/jihpp.2020.010464

    Abstract With the development of computer graphics, realistic computer graphics (CG) have become more and more common in our field of vision. This rendered image is invisible to the naked eye. How to effectively identify CG and natural images (NI) has been become a new issue in the field of digital forensics. In recent years, a series of deep learning network frameworks have shown great advantages in the field of images, which provides a good choice for us to solve this problem. This paper aims to track the latest developments and applications of deep learning in the field of CG and… More >

  • Open Access


    A Survey of GAN-Generated Fake Faces Detection Method Based on Deep Learning

    Xin Liu*, Xiao Chen

    Journal of Information Hiding and Privacy Protection, Vol.2, No.2, pp. 87-94, 2020, DOI:10.32604/jihpp.2020.09839

    Abstract In recent years, with the rapid growth of generative adversarial networks (GANs), a photo-realistic face can be easily generated from a random vector. Moreover, the faces generated by advanced GANs are very realistic. It is reasonable to acknowledge that even a well-trained viewer has difficulties to distinguish artificial from real faces. Therefore, detecting the face generated by GANs is a necessary work. This paper mainly introduces some methods to detect GAN-generated fake faces, and analyzes the advantages and disadvantages of these models based on the network structure and evaluation indexes, and the results obtained in the respective data sets. On… More >

  • Open Access


    A Convolutional Neural Network Classifier VGG-19 Architecture for Lesion Detection and Grading in Diabetic Retinopathy Based on Deep Learning

    V. Sudha1,*, T. R. Ganeshbabu2

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 827-842, 2021, DOI:10.32604/cmc.2020.012008

    Abstract Diabetic Retinopathy (DR) is a type of disease in eyes as a result of a diabetic condition that ends up damaging the retina, leading to blindness or loss of vision. Morphological and physiological retinal variations involving slowdown of blood flow in the retina, elevation of leukocyte cohesion, basement membrane dystrophy, and decline of pericyte cells, develop. As DR in its initial stage has no symptoms, early detection and automated diagnosis can prevent further visual damage. In this research, using a Deep Neural Network (DNN), segmentation methods are proposed to detect the retinal defects such as exudates, hemorrhages, microaneurysms from digital… More >

  • Open Access


    Artificial Intelligence-Based Semantic Segmentation of Ocular Regions for Biometrics and Healthcare Applications

    Rizwan Ali Naqvi1, Dildar Hussain2, Woong-Kee Loh3,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 715-732, 2021, DOI:10.32604/cmc.2020.013249

    Abstract Multiple ocular region segmentation plays an important role in different applications such as biometrics, liveness detection, healthcare, and gaze estimation. Typically, segmentation techniques focus on a single region of the eye at a time. Despite the number of obvious advantages, very limited research has focused on multiple regions of the eye. Similarly, accurate segmentation of multiple eye regions is necessary in challenging scenarios involving blur, ghost effects low resolution, off-angles, and unusual glints. Currently, the available segmentation methods cannot address these constraints. In this paper, to address the accurate segmentation of multiple eye regions in unconstrainted scenarios, a lightweight outer… More >

  • Open Access


    Image Recognition of Citrus Diseases Based on Deep Learning

    Zongshuai Liu1, Xuyu Xiang1,2,*, Jiaohua Qin1, Yun Tan1, Qin Zhang1, Neal N. Xiong3

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 457-466, 2021, DOI:10.32604/cmc.2020.012165

    Abstract In recent years, with the development of machine learning and deep learning, it is possible to identify and even control crop diseases by using electronic devices instead of manual observation. In this paper, an image recognition method of citrus diseases based on deep learning is proposed. We built a citrus image dataset including six common citrus diseases. The deep learning network is used to train and learn these images, which can effectively identify and classify crop diseases. In the experiment, we use MobileNetV2 model as the primary network and compare it with other network models in the aspect of speed,… More >

  • Open Access


    Deep Feature Extraction and Feature Fusion for Bi-Temporal Satellite Image Classification

    Anju Asokan1, J. Anitha1, Bogdan Patrut2, Dana Danciulescu3, D. Jude Hemanth1,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 373-388, 2021, DOI:10.32604/cmc.2020.012364

    Abstract Multispectral images contain a large amount of spatial and spectral data which are effective in identifying change areas. Deep feature extraction is important for multispectral image classification and is evolving as an interesting research area in change detection. However, many deep learning framework based approaches do not consider both spatial and textural details into account. In order to handle this issue, a Convolutional Neural Network (CNN) based multi-feature extraction and fusion is introduced which considers both spatial and textural features. This method uses CNN to extract the spatio-spectral features from individual channels and fuse them with the textural features. Then… More >

  • Open Access


    A Novel Intrusion Detection Algorithm Based on Long Short Term Memory Network

    Xinda Hao1, Jianmin Zhou2,*, Xueqi Shen1, Yu Yang1

    Journal of Quantum Computing, Vol.2, No.2, pp. 97-104, 2020, DOI:10.32604/jqc.2020.010819

    Abstract In recent years, machine learning technology has been widely used for timely network attack detection and classification. However, due to the large number of network traffic and the complex and variable nature of malicious attacks, many challenges have arisen in the field of network intrusion detection. Aiming at the problem that massive and high-dimensional data in cloud computing networks will have a negative impact on anomaly detection, this paper proposes a Bi-LSTM method based on attention mechanism, which learns by transmitting IDS data to multiple hidden layers. Abstract information and high-dimensional feature representation in network data messages are used to… More >

  • Open Access


    A Survey on Adversarial Example

    Jiawei Zhang*, Jinwei Wang

    Journal of Information Hiding and Privacy Protection, Vol.2, No.1, pp. 47-57, 2020, DOI:10.32604/jihpp.2020.010462

    Abstract In recent years, deep learning has become a hotspot and core method in the field of machine learning. In the field of machine vision, deep learning has excellent performance in feature extraction and feature representation, making it widely used in directions such as self-driving cars and face recognition. Although deep learning can solve large-scale complex problems very well, the latest research shows that the deep learning network model is very vulnerable to the adversarial attack. Add a weak perturbation to the original input will lead to the wrong output of the neural network, but for the human eye, the difference… More >

  • Open Access


    A Survey on Face Anti-Spoofing Algorithms

    Meigui Zhang*, Kehui Zeng, Jinwei Wang

    Journal of Information Hiding and Privacy Protection, Vol.2, No.1, pp. 21-34, 2020, DOI:10.32604/jihpp.2020.010467

    Abstract The development of artificial intelligence makes the application of face recognition more and more extensive, which also leads to the security of face recognition technology increasingly prominent. How to design a face anti-spoofing method with high accuracy, strong generalization ability and meeting practical needs is the focus of current research. This paper introduces the research progress of face anti-spoofing algorithm, and divides the existing face anti-spoofing methods into two categories: methods based on manual feature expression and methods based on deep learning. Then, the typical algorithms included in them are classified twice, and the basic ideas, advantages and disadvantages of… More >

Displaying 1311-1320 on page 132 of 1399. Per Page