Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,401)
  • Open Access

    ARTICLE

    Prison Term Prediction on Criminal Case Description with Deep Learning

    Shang Li1, Hongli Zhang1, *, Lin Ye1, Shen Su2, Xiaoding Guo1, Haining Yu1, 3, Binxing Fang1

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1217-1231, 2020, DOI:10.32604/cmc.2020.06787

    Abstract The task of prison term prediction is to predict the term of penalty based on textual fact description for a certain type of criminal case. Recent advances in deep learning frameworks inspire us to propose a two-step method to address this problem. To obtain a better understanding and more specific representation of the legal texts, we summarize a judgment model according to relevant law articles and then apply it in the extraction of case feature from judgment documents. By formalizing prison term prediction as a regression problem, we adopt the linear regression model and the neural network model to train… More >

  • Open Access

    ARTICLE

    Automatic Detection of Aortic Dissection Based on Morphology and Deep Learning

    Yun Tan1, #, Ling Tan2, #, Xuyu Xiang1, *, Hao Tang2, *, Jiaohua Qin1, Wenyan Pan1

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1201-1215, 2020, DOI:10.32604/cmc.2020.07127

    Abstract Aortic dissection (AD) is a kind of acute and rapidly progressing cardiovascular disease. In this work, we build a CTA image library with 88 CT cases, 43 cases of aortic dissection and 45 cases of health. An aortic dissection detection method based on CTA images is proposed. ROI is extracted based on binarization and morphology opening operation. The deep learning networks (InceptionV3, ResNet50, and DenseNet) are applied after the preprocessing of the datasets. Recall, F1-score, Matthews correlation coefficient (MCC) and other performance indexes are investigated. It is shown that the deep learning methods have much better performance than the traditional… More >

  • Open Access

    ARTICLE

    Classification and Research of Skin Lesions Based on Machine Learning

    Jian Liu1, Wantao Wang1, Jie Chen2, *, Guozhong Sun3, Alan Yang4

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1187-1200, 2020, DOI:10.32604/cmc.2020.05883

    Abstract Classification of skin lesions is a complex identification challenge. Due to the wide variety of skin lesions, doctors need to spend a lot of time and effort to judge the lesion image which zoomed through the dermatoscopy. The diagnosis which the algorithm of identifying pathological images assists doctors gets more and more attention. With the development of deep learning, the field of image recognition has made longterm progress. The effect of recognizing images through convolutional neural network models is better than traditional image recognition technology. In this work, we try to classify seven kinds of lesion images by various models… More >

  • Open Access

    ARTICLE

    Data Augmentation Technology Driven By Image Style Transfer in Self-Driving Car Based on End-to-End Learning

    Dongjie Liu1, Jin Zhao1, *, Axin Xi2, Chao Wang1, Xinnian Huang1, Kuncheng Lai1, Chang Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 593-617, 2020, DOI:10.32604/cmes.2020.08641

    Abstract With the advent of deep learning, self-driving schemes based on deep learning are becoming more and more popular. Robust perception-action models should learn from data with different scenarios and real behaviors, while current end-to-end model learning is generally limited to training of massive data, innovation of deep network architecture, and learning in-situ model in a simulation environment. Therefore, we introduce a new image style transfer method into data augmentation, and improve the diversity of limited data by changing the texture, contrast ratio and color of the image, and then it is extended to the scenarios that the model has been… More >

  • Open Access

    ARTICLE

    A Novel Combinational Convolutional Neural Network for Automatic Food-Ingredient Classification

    Lili Pan1, Cong Li1, *, Samira Pouyanfar2, Rongyu Chen1, Yan Zhou1

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 731-746, 2020, DOI:10.32604/cmc.2020.06508

    Abstract With the development of deep learning and Convolutional Neural Networks (CNNs), the accuracy of automatic food recognition based on visual data have significantly improved. Some research studies have shown that the deeper the model is, the higher the accuracy is. However, very deep neural networks would be affected by the overfitting problem and also consume huge computing resources. In this paper, a new classification scheme is proposed for automatic food-ingredient recognition based on deep learning. We construct an up-to-date combinational convolutional neural network (CBNet) with a subnet merging technique. Firstly, two different neural networks are utilized for learning interested features.… More >

  • Open Access

    REVIEW

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Xing Deng1, 2, Haijian Shao1, *, Chunlong Hu1, Dengbiao Jiang1, Yingtao Jiang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.1, pp. 273-301, 2020, DOI:10.32604/cmes.2020.08768

    Abstract Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of… More >

  • Open Access

    ARTICLE

    Shadow Detection and Removal From Photo-Realistic Synthetic Urban Image Using Deep Learning

    Hee-Jin Yoon1, Kang-Jik Kim1, Jun-Chul Chun1,*

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 459-472, 2020, DOI:10.32604/cmc.2020.08799

    Abstract Recently, virtual reality technology that can interact with various data is used for urban design and analysis. Reality, one of the most important elements in virtual reality technology, means visual expression so that a person can experience threedimensional space like reality. To obtain this realism, real-world data are used in the various fields. For example, in order to increase the realism of 3D modeled building textures real aerial images are utilized in 3D modelling. However, the aerial image captured during the day can be shadowed by the sun and it can cause the distortion or deterioration of image. To resolve… More >

  • Open Access

    ARTICLE

    A Convolution-Based System for Malicious URLs Detection

    Chaochao Luo1, Shen Su2, *, Yanbin Sun2, Qingji Tan3, Meng Han4, Zhihong Tian2, *

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 399-411, 2020, DOI:10.32604/cmc.2020.06507

    Abstract Since the web service is essential in daily lives, cyber security becomes more and more important in this digital world. Malicious Uniform Resource Locator (URL) is a common and serious threat to cybersecurity. It hosts unsolicited content and lure unsuspecting users to become victim of scams, such as theft of private information, monetary loss, and malware installation. Thus, it is imperative to detect such threats. However, traditional approaches for malicious URLs detection that based on the blacklists are easy to be bypassed and lack the ability to detect newly generated malicious URLs. In this paper, we propose a novel malicious… More >

  • Open Access

    ARTICLE

    Parameters Compressing in Deep Learning

    Shiming He1, Zhuozhou Li1, Yangning Tang1, Zhuofan Liao1, Feng Li1, *, Se-Jung Lim2

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 321-336, 2020, DOI:10.32604/cmc.2020.06130

    Abstract With the popularity of deep learning tools in image decomposition and natural language processing, how to support and store a large number of parameters required by deep learning algorithms has become an urgent problem to be solved. These parameters are huge and can be as many as millions. At present, a feasible direction is to use the sparse representation technique to compress the parameter matrix to achieve the purpose of reducing parameters and reducing the storage pressure. These methods include matrix decomposition and tensor decomposition. To let vector take advance of the compressing performance of matrix decomposition and tensor decomposition,… More >

  • Open Access

    ARTICLE

    SSD Real-Time Illegal Parking Detection Based on Contextual Information Transmission

    Huanrong Tang1, Aoming Peng1, Dongming Zhang2, Tianming Liu3, Jianquan Ouyang1, *

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 293-307, 2020, DOI:10.32604/cmc.2020.06427

    Abstract With the improvement of the national economic level, the number of vehicles is still increasing year by year. According to the statistics of National Bureau of Statics, the number is approximately up to 327 million in China by the end of 2018, which makes urban traffic pressure continues to rise so that the negative impact of urban traffic order is growing. Illegal parking-the common problem in the field of transportation security is urgent to be solved and traditional methods to address it are mainly based on ground loop and manual supervision, which may miss detection and cost much manpower. Due… More >

Displaying 1361-1370 on page 137 of 1401. Per Page