Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (163)
  • Open Access

    ARTICLE

    Research of an EPB shield pressure and depth prediction model based on deep neural network and its control device

    Jiacheng Shao1,2, Jingxiu Ling1,2,3, Rongchang Zhang1,2, Xiaoyuan Cheng1,2, Hao Zhang3

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.40, No.1, pp. 1-8, 2024, DOI:10.23967/j.rimni.2024.01.004 - 19 January 2024

    Abstract Based on the construction data of Fuzhou Metro Line 4 in Fujian Province, China, this paper proposes a soil pressure prediction model that combines Long Short-Term Memory (LSTM) and Particle Swarm Optimization (PSO). The values of Mean Absolute Error, Mean Squared Error, and Coefficient of Determination are 0.007MPa, 0.007%, and 0.93, respectively, indicating an improvement in accuracy.Wang-Mendel algorithm is used to establish fuzzy rules. The Mean Absolute Error and Mean Squared Error of the rotating speed of the screw machine are 0.065rpm and 1.528%, and the Coefficient of Determination is 0.82. The calculation accuracy of More >

  • Open Access

    ARTICLE

    Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1457-1490, 2024, DOI:10.32604/cmc.2024.051996 - 18 July 2024

    Abstract This study describes improving network security by implementing and assessing an intrusion detection system (IDS) based on deep neural networks (DNNs). The paper investigates contemporary technical ways for enhancing intrusion detection performance, given the vital relevance of safeguarding computer networks against harmful activity. The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset, a popular benchmark for IDS research. The model performs well in both the training and validation stages, with 91.30% training accuracy and 94.38% validation accuracy. Thus, the model shows good learning and generalization capabilities with minor losses of… More >

  • Open Access

    ARTICLE

    Contemporary Study for Detection of COVID-19 Using Machine Learning with Explainable AI

    Saad Akbar1,2, Humera Azam1, Sulaiman Sulmi Almutairi3,*, Omar Alqahtani4, Habib Shah4, Aliya Aleryani4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1075-1104, 2024, DOI:10.32604/cmc.2024.050913 - 18 July 2024

    Abstract The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic tools. In this article, a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored dataset obtained from a private hospital for detecting COVID-19, pneumonia, and normal conditions in chest X-ray images (CXIs) is proposed coupled with Explainable Artificial Intelligence (XAI). Our study leverages less preprocessing with pre-trained cutting-edge models like InceptionV3, VGG16, and VGG19 that excel in the task of feature extraction. The methodology is further enhanced by the inclusion of the t-SNE (t-Distributed… More >

  • Open Access

    ARTICLE

    A Novel Locomotion Rule Rmbedding Long Short-Term Memory Network with Attention for Human Locomotor Intent Classification Using Multi-Sensors Signals

    Jiajie Shen1, Yan Wang1,*, Dongxu Zhang2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4349-4370, 2024, DOI:10.32604/cmc.2024.047903 - 20 June 2024

    Abstract Locomotor intent classification has become a research hotspot due to its importance to the development of assistive robotics and wearable devices. Previous work have achieved impressive performance in classifying steady locomotion states. However, it remains challenging for these methods to attain high accuracy when facing transitions between steady locomotion states. Due to the similarities between the information of the transitions and their adjacent steady states. Furthermore, most of these methods rely solely on data and overlook the objective laws between physical activities, resulting in lower accuracy, particularly when encountering complex locomotion modes such as transitions.… More >

  • Open Access

    ARTICLE

    Multimodal Deep Neural Networks for Digitized Document Classification

    Aigerim Baimakhanova1,*, Ainur Zhumadillayeva2, Bigul Mukhametzhanova3, Natalya Glazyrina2, Rozamgul Niyazova2, Nurseit Zhunissov1, Aizhan Sambetbayeva4

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 793-811, 2024, DOI:10.32604/csse.2024.043273 - 20 May 2024

    Abstract As digital technologies have advanced more rapidly, the number of paper documents recently converted into a digital format has exponentially increased. To respond to the urgent need to categorize the growing number of digitized documents, the classification of digitized documents in real time has been identified as the primary goal of our study. A paper classification is the first stage in automating document control and efficient knowledge discovery with no or little human involvement. Artificial intelligence methods such as Deep Learning are now combined with segmentation to study and interpret those traits, which were not… More >

  • Open Access

    ARTICLE

    CMAES-WFD: Adversarial Website Fingerprinting Defense Based on Covariance Matrix Adaptation Evolution Strategy

    Di Wang, Yuefei Zhu, Jinlong Fei*, Maohua Guo

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2253-2276, 2024, DOI:10.32604/cmc.2024.049504 - 15 May 2024

    Abstract Website fingerprinting, also known as WF, is a traffic analysis attack that enables local eavesdroppers to infer a user’s browsing destination, even when using the Tor anonymity network. While advanced attacks based on deep neural network (DNN) can perform feature engineering and attain accuracy rates of over 98%, research has demonstrated that DNN is vulnerable to adversarial samples. As a result, many researchers have explored using adversarial samples as a defense mechanism against DNN-based WF attacks and have achieved considerable success. However, these methods suffer from high bandwidth overhead or require access to the target… More >

  • Open Access

    ARTICLE

    MoBShield: A Novel XML Approach for Securing Mobile Banking

    Saeed Seraj1, Ali Safaa Sadiq1,*, Omprakash Kaiwartya1, Mohammad Aljaidi2, Alexandros Konios1, Mohammed Ali3, Mohammed Abazeed3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2123-2149, 2024, DOI:10.32604/cmc.2024.048914 - 15 May 2024

    Abstract Mobile banking security has witnessed significant R&D attention from both financial institutions and academia. This is due to the growing number of mobile baking applications and their reachability and usefulness to society. However, these applications are also attractive prey for cybercriminals, who use a variety of malware to steal personal banking information. Related literature in mobile banking security requires many permissions that are not necessary for the application’s intended security functionality. In this context, this paper presents a novel efficient permission identification approach for securing mobile banking (MoBShield) to detect and prevent malware. A permission-based… More >

  • Open Access

    ARTICLE

    U-Net Inspired Deep Neural Network-Based Smoke Plume Detection in Satellite Images

    Ananthakrishnan Balasundaram1,2, Ayesha Shaik1,2,*, Japmann Kaur Banga2, Aman Kumar Singh2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 779-799, 2024, DOI:10.32604/cmc.2024.048362 - 25 April 2024

    Abstract Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have been identified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions is essential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcing emission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrial smoke plumes using freely accessible geo-satellite imagery. The existing system has so many lagging factors such as limitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timely response… More >

  • Open Access

    REVIEW

    A Survey on Chinese Sign Language Recognition: From Traditional Methods to Artificial Intelligence

    Xianwei Jiang1, Yanqiong Zhang1,*, Juan Lei1, Yudong Zhang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1-40, 2024, DOI:10.32604/cmes.2024.047649 - 16 April 2024

    Abstract Research on Chinese Sign Language (CSL) provides convenience and support for individuals with hearing impairments to communicate and integrate into society. This article reviews the relevant literature on Chinese Sign Language Recognition (CSLR) in the past 20 years. Hidden Markov Models (HMM), Support Vector Machines (SVM), and Dynamic Time Warping (DTW) were found to be the most commonly employed technologies among traditional identification methods. Benefiting from the rapid development of computer vision and artificial intelligence technology, Convolutional Neural Networks (CNN), 3D-CNN, YOLO, Capsule Network (CapsNet) and various deep neural networks have sprung up. Deep Neural… More >

  • Open Access

    ARTICLE

    Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction

    Sureka Sivavelu, Venkatesh Palanisamy*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3469-3487, 2024, DOI:10.32604/cmc.2024.047407 - 26 March 2024

    Abstract The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes… More >

Displaying 1-10 on page 1 of 163. Per Page