Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (168)
  • Open Access

    ARTICLE

    MAD-ANET: Malware Detection Using Attention-Based Deep Neural Networks

    Waleed Khalid Al-Ghanem1, Emad Ul Haq Qazi2,*, Tanveer Zia2,3, Muhammad Hamza Faheem2, Muhammad Imran4, Iftikhar Ahmad5

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1009-1027, 2025, DOI:10.32604/cmes.2025.058352 - 11 April 2025

    Abstract In the current digital era, new technologies are becoming an essential part of our lives. Consequently, the number of malicious software or malware attacks is rapidly growing. There is no doubt, the majority of malware attacks can be detected by most antivirus programs. However, such types of antivirus programs are one step behind malicious software. Due to these dilemmas, deep learning become popular in the detection and classification of malicious data. Therefore, researchers have significantly focused on finding solutions for malware attacks by analyzing malicious samples with the help of different techniques and models. In More >

  • Open Access

    ARTICLE

    XGBoost-Liver: An Intelligent Integrated Features Approach for Classifying Liver Diseases Using Ensemble XGBoost Training Model

    Sumaiya Noor1, Salman A. AlQahtani2, Salman Khan3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1435-1450, 2025, DOI:10.32604/cmc.2025.061700 - 26 March 2025

    Abstract The liver is a crucial gland and the second-largest organ in the human body and also essential in digestion, metabolism, detoxification, and immunity. Liver diseases result from factors such as viral infections, obesity, alcohol consumption, injuries, or genetic predispositions. Pose significant health risks and demand timely diagnosis and treatment to enhance survival rates. Traditionally, diagnosing liver diseases relied heavily on clinical expertise, often leading to subjective, challenging, and time-intensive processes. However, early detection is essential for effective intervention, and advancements in machine learning (ML) have demonstrated remarkable success in predicting various conditions, including Chronic Obstructive… More >

  • Open Access

    ARTICLE

    SFPBL: Soft Filter Pruning Based on Logistic Growth Differential Equation for Neural Network

    Can Hu1, Shanqing Zhang2,*, Kewei Tao2, Gaoming Yang1, Li Li2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4913-4930, 2025, DOI:10.32604/cmc.2025.059770 - 06 March 2025

    Abstract The surge of large-scale models in recent years has led to breakthroughs in numerous fields, but it has also introduced higher computational costs and more complex network architectures. These increasingly large and intricate networks pose challenges for deployment and execution while also exacerbating the issue of network over-parameterization. To address this issue, various network compression techniques have been developed, such as network pruning. A typical pruning algorithm follows a three-step pipeline involving training, pruning, and retraining. Existing methods often directly set the pruned filters to zero during retraining, significantly reducing the parameter space. However, this… More >

  • Open Access

    ARTICLE

    Improving Fundus Detection Precision in Diabetic Retinopathy Using Derivative-Based Deep Neural Networks

    Asma Aldrees1, Hong Min2,*, Ashit Kumar Dutta3, Yousef Ibrahim Daradkeh4, Mohd Anjum5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2487-2511, 2025, DOI:10.32604/cmes.2025.061103 - 03 March 2025

    Abstract Fundoscopic diagnosis involves assessing the proper functioning of the eye’s nerves, blood vessels, retinal health, and the impact of diabetes on the optic nerves. Fundus disorders are a major global health concern, affecting millions of people worldwide due to their widespread occurrence. Fundus photography generates machine-based eye images that assist in diagnosing and treating ocular diseases such as diabetic retinopathy. As a result, accurate fundus detection is essential for early diagnosis and effective treatment, helping to prevent severe complications and improve patient outcomes. To address this need, this article introduces a Derivative Model for Fundus… More >

  • Open Access

    ARTICLE

    RSSI-Based 3D Wireless Sensor Node Localization Using Hybrid T Cell Immune and Lotus Optimization

    Weiwei Hu1, Kiran Sree Pokkuluri2, Rajesh Arunachalam3,*, Bander A. Jabr4, Yasser A. Ali4, Preethi Palanisamy5

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4833-4851, 2024, DOI:10.32604/cmc.2024.055561 - 19 December 2024

    Abstract Wireless Sensor Network (WSNs) consists of a group of nodes that analyze the information from surrounding regions. The sensor nodes are responsible for accumulating and exchanging information. Generally, node localization is the process of identifying the target node’s location. In this research work, a Received Signal Strength Indicator (RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization models. Initially, the RSSI value is identified using the Deep Neural Network (DNN). The RSSI is conceded as the range-based method and it does not require special hardware for the node… More >

  • Open Access

    ARTICLE

    Data-Driven Modeling for Wind Turbine Blade Loads Based on Deep Neural Network

    Jianyong Ao1, Yanping Li1, Shengqing Hu1, Songyu Gao2, Qi Yao2,*

    Energy Engineering, Vol.121, No.12, pp. 3825-3841, 2024, DOI:10.32604/ee.2024.055250 - 22 November 2024

    Abstract Blades are essential components of wind turbines. Reducing their fatigue loads during operation helps to extend their lifespan, but it is difficult to quickly and accurately calculate the fatigue loads of blades. To solve this problem, this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis, feature selection, and model construction. In the mechanism analysis part, the generation mechanism of blade loads and the load theoretical calculation method based on material damage theory are analyzed, and four measurable operating state parameters related to blade loads are… More >

  • Open Access

    REVIEW

    Robust Deep Image Watermarking: A Survey

    Yuanjing Luo, Xichen Tan, Zhiping Cai*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 133-160, 2024, DOI:10.32604/cmc.2024.055150 - 15 October 2024

    Abstract In the era of internet proliferation, safeguarding digital media copyright and integrity, especially for images, is imperative. Digital watermarking stands out as a pivotal solution for image security. With the advent of deep learning, watermarking has seen significant advancements. Our review focuses on the innovative deep watermarking approaches that employ neural networks to identify robust embedding spaces, resilient to various attacks. These methods, characterized by a streamlined encoder-decoder architecture, have shown enhanced performance through the incorporation of novel training modules. This article offers an in-depth analysis of deep watermarking’s core technologies, current status, and prospective More >

  • Open Access

    ARTICLE

    Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1457-1490, 2024, DOI:10.32604/cmc.2024.051996 - 18 July 2024

    Abstract This study describes improving network security by implementing and assessing an intrusion detection system (IDS) based on deep neural networks (DNNs). The paper investigates contemporary technical ways for enhancing intrusion detection performance, given the vital relevance of safeguarding computer networks against harmful activity. The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset, a popular benchmark for IDS research. The model performs well in both the training and validation stages, with 91.30% training accuracy and 94.38% validation accuracy. Thus, the model shows good learning and generalization capabilities with minor losses of… More >

  • Open Access

    ARTICLE

    Contemporary Study for Detection of COVID-19 Using Machine Learning with Explainable AI

    Saad Akbar1,2, Humera Azam1, Sulaiman Sulmi Almutairi3,*, Omar Alqahtani4, Habib Shah4, Aliya Aleryani4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1075-1104, 2024, DOI:10.32604/cmc.2024.050913 - 18 July 2024

    Abstract The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic tools. In this article, a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored dataset obtained from a private hospital for detecting COVID-19, pneumonia, and normal conditions in chest X-ray images (CXIs) is proposed coupled with Explainable Artificial Intelligence (XAI). Our study leverages less preprocessing with pre-trained cutting-edge models like InceptionV3, VGG16, and VGG19 that excel in the task of feature extraction. The methodology is further enhanced by the inclusion of the t-SNE (t-Distributed… More >

  • Open Access

    ARTICLE

    A Novel Locomotion Rule Rmbedding Long Short-Term Memory Network with Attention for Human Locomotor Intent Classification Using Multi-Sensors Signals

    Jiajie Shen1, Yan Wang1,*, Dongxu Zhang2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4349-4370, 2024, DOI:10.32604/cmc.2024.047903 - 20 June 2024

    Abstract Locomotor intent classification has become a research hotspot due to its importance to the development of assistive robotics and wearable devices. Previous work have achieved impressive performance in classifying steady locomotion states. However, it remains challenging for these methods to attain high accuracy when facing transitions between steady locomotion states. Due to the similarities between the information of the transitions and their adjacent steady states. Furthermore, most of these methods rely solely on data and overlook the objective laws between physical activities, resulting in lower accuracy, particularly when encountering complex locomotion modes such as transitions.… More >

Displaying 1-10 on page 1 of 168. Per Page