Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (159)
  • Open Access


    Optimizing Deep Neural Networks for Face Recognition to Increase Training Speed and Improve Model Accuracy

    Mostafa Diba*, Hossein Khosravi

    Intelligent Automation & Soft Computing, Vol.38, No.3, pp. 315-332, 2023, DOI:10.32604/iasc.2023.046590

    Abstract Convolutional neural networks continually evolve to enhance accuracy in addressing various problems, leading to an increase in computational cost and model size. This paper introduces a novel approach for pruning face recognition models based on convolutional neural networks. The proposed method identifies and removes inefficient filters based on the information volume in feature maps. In each layer, some feature maps lack useful information, and there exists a correlation between certain feature maps. Filters associated with these two types of feature maps impose additional computational costs on the model. By eliminating filters related to these categories… More >

  • Open Access


    Deep Neural Network Architecture Search via Decomposition-Based Multi-Objective Stochastic Fractal Search

    Hongshang Xu1, Bei Dong1,2,*, Xiaochang Liu1, Xiaojun Wu1,2

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 185-202, 2023, DOI:10.32604/iasc.2023.041177

    Abstract Deep neural networks often outperform classical machine learning algorithms in solving real-world problems. However, designing better networks usually requires domain expertise and consumes significant time and computing resources. Moreover, when the task changes, the original network architecture becomes outdated and requires redesigning. Thus, Neural Architecture Search (NAS) has gained attention as an effective approach to automatically generate optimal network architectures. Most NAS methods mainly focus on achieving high performance while ignoring architectural complexity. A myriad of research has revealed that network performance and structural complexity are often positively correlated. Nevertheless, complex network structures will bring… More >

  • Open Access


    Abstractive Arabic Text Summarization Using Hyperparameter Tuned Denoising Deep Neural Network

    Ibrahim M. Alwayle1, Hala J. Alshahrani2, Saud S. Alotaibi3, Khaled M. Alalayah1, Amira Sayed A. Aziz4, Khadija M. Alaidarous1, Ibrahim Abdulrab Ahmed5, Manar Ahmed Hamza6,*

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 153-168, 2023, DOI:10.32604/iasc.2023.034718

    Abstract Abstractive text summarization is crucial to produce summaries of natural language with basic concepts from large text documents. Despite the achievement of English language-related abstractive text summarization models, the models that support Arabic language text summarization are fewer in number. Recent abstractive Arabic summarization models encounter different issues that need to be resolved. Syntax inconsistency is a crucial issue resulting in the low-accuracy summary. A new technique has achieved remarkable outcomes by adding topic awareness in the text summarization process that guides the module by imitating human awareness. The current research article presents Abstractive Arabic… More >

  • Open Access


    Facial Image-Based Autism Detection: A Comparative Study of Deep Neural Network Classifiers

    Tayyaba Farhat1,2, Sheeraz Akram3,*, Hatoon S. AlSagri3, Zulfiqar Ali4, Awais Ahmad3, Arfan Jaffar1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 105-126, 2024, DOI:10.32604/cmc.2023.045022

    Abstract Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by significant challenges in social interaction, communication, and repetitive behaviors. Timely and precise ASD detection is crucial, particularly in regions with limited diagnostic resources like Pakistan. This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context. The research involves experimentation with VGG16 and MobileNet models, exploring different batch sizes, optimizers, and learning rate schedulers. In addition, the “Orange” machine learning tool is employed to… More >

  • Open Access


    Novel Rifle Number Recognition Based on Improved YOLO in Military Environment

    Hyun Kwon1,*, Sanghyun Lee2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 249-263, 2024, DOI:10.32604/cmc.2023.042466

    Abstract Deep neural networks perform well in image recognition, object recognition, pattern analysis, and speech recognition. In military applications, deep neural networks can detect equipment and recognize objects. In military equipment, it is necessary to detect and recognize rifle management, which is an important piece of equipment, using deep neural networks. There have been no previous studies on the detection of real rifle numbers using real rifle image datasets. In this study, we propose a method for detecting and recognizing rifle numbers when rifle image data are insufficient. The proposed method was designed to improve the… More >

  • Open Access


    The Short-Term Prediction of Wind Power Based on the Convolutional Graph Attention Deep Neural Network

    Fan Xiao1, Xiong Ping1, Yeyang Li2,*, Yusen Xu2, Yiqun Kang1, Dan Liu1, Nianming Zhang1

    Energy Engineering, Vol.121, No.2, pp. 359-376, 2024, DOI:10.32604/ee.2023.040887

    Abstract The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale. Therefore, wind power forecasting plays a key role in improving the safety and economic benefits of the power grid. This paper proposes a wind power predicting method based on a convolutional graph attention deep neural network with multi-wind farm data. Based on the graph attention network and attention mechanism, the method extracts spatial-temporal characteristics from the data of multiple wind farms. Then, combined with a deep… More >

  • Open Access


    A Novel Predictive Model for Edge Computing Resource Scheduling Based on Deep Neural Network

    Ming Gao1,#, Weiwei Cai1,#, Yizhang Jiang1, Wenjun Hu3, Jian Yao2, Pengjiang Qian1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 259-277, 2024, DOI:10.32604/cmes.2023.029015

    Abstract Currently, applications accessing remote computing resources through cloud data centers is the main mode of operation, but this mode of operation greatly increases communication latency and reduces overall quality of service (QoS) and quality of experience (QoE). Edge computing technology extends cloud service functionality to the edge of the mobile network, closer to the task execution end, and can effectively mitigate the communication latency problem. However, the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management, and the booming development of artificial neural networks provides More >

  • Open Access


    Modeling a Novel Hyper-Parameter Tuned Deep Learning Enabled Malaria Parasite Detection and Classification

    Tamal Kumar Kundu1, Dinesh Kumar Anguraj1,*, S. V. Sudha2,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3289-3304, 2023, DOI:10.32604/cmc.2023.039515

    Abstract A theoretical methodology is suggested for finding the malaria parasites’ presence with the help of an intelligent hyper-parameter tuned Deep Learning (DL) based malaria parasite detection and classification (HPTDL-MPDC) in the smear images of human peripheral blood. Some existing approaches fail to predict the malaria parasitic features and reduce the prediction accuracy. The trained model initiated in the proposed system for classifying peripheral blood smear images into the non-parasite or parasite classes using the available online dataset. The Adagrad optimizer is stacked with the suggested pre-trained Deep Neural Network (DNN) with the help of the… More >

  • Open Access


    Detecting and Mitigating DDOS Attacks in SDNs Using Deep Neural Network

    Gul Nawaz1, Muhammad Junaid1, Adnan Akhunzada2, Abdullah Gani2,*, Shamyla Nawazish3, Asim Yaqub3, Adeel Ahmed1, Huma Ajab4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2157-2178, 2023, DOI:10.32604/cmc.2023.026952

    Abstract Distributed denial of service (DDoS) attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user. We proposed a deep neural network (DNN) model for the detection of DDoS attacks in the Software-Defined Networking (SDN) paradigm. SDN centralizes the control plane and separates it from the data plane. It simplifies a network and eliminates vendor specification of a device. Because of this open nature and centralized control, SDN can easily become a victim of DDoS attacks. We proposed a supervised Developed Deep Neural Network (DDNN) model that can… More >

  • Open Access


    Optical Based Gradient-Weighted Class Activation Mapping and Transfer Learning Integrated Pneumonia Prediction Model

    Chia-Wei Jan1, Yu-Jhih Chiu1, Kuan-Lin Chen2, Ting-Chun Yao3, Ping-Huan Kuo1,4,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2989-3010, 2023, DOI:10.32604/csse.2023.042078

    Abstract Pneumonia is a common lung disease that is more prone to affect the elderly and those with weaker respiratory systems. However, hospital medical resources are limited, and sometimes the workload of physicians is too high, which can affect their judgment. Therefore, a good medical assistance system is of great significance for improving the quality of medical care. This study proposed an integrated system by combining transfer learning and gradient-weighted class activation mapping (Grad-CAM). Pneumonia is a common lung disease that is generally diagnosed using X-rays. However, in areas with limited medical resources, a shortage of… More >

Displaying 11-20 on page 2 of 159. Per Page