Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    PROCEEDINGS

    Design Sensitivity Analysis of Thin-Body Acoustic Problems Above an Infinite Impedance Plane by Using a Fast Multipole Indirect BEM

    Menghui Liang1, Changjun Zheng1,*, Yongbin Zhang1, Chuanxing Bi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09605

    Abstract This paper presents an accurate and efficient indirect boundary element method (IBEM) accelerated by the fast multipole algorithm (FMA)for the design sensitivity analysis of large-scale thin-body acoustic problems above an infinite impedance plane. The non-uniqueness issue of the IBEM in solving exterior acoustic problems is avoided by applying a hybrid combination of single- and double-layer potentials. The half-space impedance Green’s function which involves an image complex line source and is valid for both mass-like and spring-like impedance plane is employed to involve the sound-absorbing effect of the ground surface. Explicit evaluation formulations of the singular boundary integrals are derived and… More >

  • Open Access

    ARTICLE

    Structural-Acoustic Design Sensitivity Analysis based on Direct Differentiation Method with Different Element Types

    L.L. Chen1, H.B. Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.3, pp. 249-276, 2015, DOI:10.3970/cmes.2015.107.249

    Abstract Engineers have started to develop ways to decrease noise radiation. Structural-acoustic design sensitivity analysis can provide information on how changes in design variable affect the radiated acoustic performance. As such, it is an important step in the structural-acoustic design and in optimization processes. For thin structures immersed in water, a full interaction between the structural domain and the fluid domain needs to be taken into account. In this work, the finite element method is used to model the structure parts and the boundary element method is applied to the exterior acoustic problem. The formula of the sound pressure sensitivity based… More >

  • Open Access

    ARTICLE

    FEM/Wideband FMBEM Coupling for Fluid-Structure Interaction Problem and 2D Acoustic Design Sensitivity Analysis

    L.L. Chen1, H.B. Chen2, C.J. Zheng3

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.6, pp. 459-483, 2013, DOI:10.3970/cmes.2013.094.459

    Abstract A coupling algorithm based on the finite element method and the wideband fast multipole boundary element method (FEM/wideband FMBEM) is proposed for the simulation of fluid-structure interaction and structural-acoustic sensitivity analysis using the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. The FEM/Wideband FMBEM algorithm makes it possible to predict the effects of arbitrarily shaped vibrating structures on the sound… More >

  • Open Access

    ARTICLE

    Natural neighbour Petrov-Galerkin Method for Shape Design Sensitivity Analysis

    Kai Wang1, Shenjie Zhou1,2, Zhifeng Nie1, Shengli Kong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.2, pp. 107-122, 2008, DOI:10.3970/cmes.2008.026.107

    Abstract The natural neighbour Petrov-Galerkin method (NNPG) is one of the special cases of the generalized meshless local Petrov-Galerkin method (MLPG). This paper demonstrates the NNPG can be successfully used in design sensitivity analysis in 2D elasticity. The design sensitivity analysis method based on the local weak form (DSA-LWF) in the NNPG context is proposed. In the DSA-LWF, the local weak form of governing equation is directly differentiated with respect to design variables and discretized with NNPG to obtain the sensitivities of structural responds. The calculation of derivatives of shape functions with respect to design variables is avoided. No background meshes… More >

Displaying 1-10 on page 1 of 4. Per Page