Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (498)
  • Open Access

    REVIEW

    The Integrated Histopathologic and Molecular Approach to Adult-type Diffuse Astrocytomas: Status of the Art, Based on the 2021 WHO Classification of Central Nervous System Tumors

    Hiba Alzoubi1, Alameen Alsabbah2, Rosario Caltabiano3, Giuseppe Broggi3,*

    Oncologie, Vol.24, No.1, pp. 51-63, 2022, DOI:10.32604/oncologie.2022.020890 - 31 March 2022

    Abstract The 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS) improved our understanding of the brain neoplasm biology. In more details, differences between diffuse gliomas that primarily occur in adults and those that primarily occur in children have been identified by the terms “adult-type” and “pediatric-type” diffuse gliomas. More importantly, both diagnostic and grading criteria for adult-type diffuse astrocytomas have been modified, by adopting novel molecular markers: diffuse astrocytomas, IDH-mutant have been grouped into a single entity and graded as CNS WHO grades 2, 3, or 4, with the assignment of More >

  • Open Access

    ARTICLE

    Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification

    Areej A. Malibari1, Siwar Ben Haj Hassine2, Abdelwahed Motwakel3, Manar Ahmed Hamza3,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2859-2875, 2022, DOI:10.32604/cmc.2022.026338 - 29 March 2022

    Abstract Atherosclerosis diagnosis is an inarticulate and complicated cognitive process. Researches on medical diagnosis necessitate maximum accuracy and performance to make optimal clinical decisions. Since the medical diagnostic outcomes need to be prompt and accurate, the recently developed artificial intelligence (AI) and deep learning (DL) models have received considerable attention among research communities. This study develops a novel Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification (MDL-BADDC) model. The proposed MDL-BADDC technique encompasses several stages of operations such as pre-processing, feature selection, classification, and parameter tuning. Besides, the proposed MDL-BADDC technique designs a More >

  • Open Access

    ARTICLE

    Heart Disease Diagnosis Using the Brute Force Algorithm and Machine Learning Techniques

    Junaid Rashid1, Samina Kanwal2, Jungeun Kim1,*, Muhammad Wasif Nisar2, Usman Naseem3, Amir Hussain4

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3195-3211, 2022, DOI:10.32604/cmc.2022.026064 - 29 March 2022

    Abstract Heart disease is one of the leading causes of death in the world today. Prediction of heart disease is a prominent topic in the clinical data processing. To increase patient survival rates, early diagnosis of heart disease is an important field of research in the medical field. There are many studies on the prediction of heart disease, but limited work is done on the selection of features. The selection of features is one of the best techniques for the diagnosis of heart diseases. In this research paper, we find optimal features using the brute-force algorithm,… More >

  • Open Access

    ARTICLE

    Early Diagnosis of Alzheimer’s Disease Based on Convolutional Neural Networks

    Atif Mehmood1,*, Ahed Abugabah1, Ahmed Ali AlZubi2, Louis Sanzogni3

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 305-315, 2022, DOI:10.32604/csse.2022.018520 - 23 March 2022

    Abstract Alzheimer’s disease (AD) is a neurodegenerative disorder, causing the most common dementia in the elderly peoples. The AD patients are rapidly increasing in each year and AD is sixth leading cause of death in USA. Magnetic resonance imaging (MRI) is the leading modality used for the diagnosis of AD. Deep learning based approaches have produced impressive results in this domain. The early diagnosis of AD depends on the efficient use of classification approach. To address this issue, this study proposes a system using two convolutional neural networks (CNN) based approaches for an early diagnosis of… More >

  • Open Access

    ARTICLE

    Fault Pattern Diagnosis and Classification in Sensor Nodes Using Fall Curve

    Mudita Uppal1, Deepali Gupta1, Divya Anand2, Fahd S. Alharithi3, Jasem Almotiri3, Arturo Mansilla4,5, Dinesh Singh6, Nitin Goyal1,*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1799-1814, 2022, DOI:10.32604/cmc.2022.025330 - 24 February 2022

    Abstract The rapid expansion of Internet of Things (IoT) devices deploys various sensors in different applications like homes, cities and offices. IoT applications depend upon the accuracy of sensor data. So, it is necessary to predict faults in the sensor and isolate their cause. A novel primitive technique named fall curve is presented in this paper which characterizes sensor faults. This technique identifies the faulty sensor and determines the correct working of the sensor. Different sources of sensor faults are explained in detail whereas various faults that occurred in sensor nodes available in IoT devices are… More >

  • Open Access

    ARTICLE

    Dm-Health App: Diabetes Diagnosis Using Machine Learning with Smartphone

    Elias Hossain1, Mohammed Alshehri2, Sultan Almakdi2,*, Hanan Halawani2, Md. Mizanur Rahman3, Wahidur Rahman4, Sabila Al Jannat5, Nadim Kaysar6, Shishir Mia4

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1713-1746, 2022, DOI:10.32604/cmc.2022.024822 - 24 February 2022

    Abstract Diabetes Mellitus is one of the most severe diseases, and many studies have been conducted to anticipate diabetes. This research aimed to develop an intelligent mobile application based on machine learning to determine the diabetic, pre-diabetic, or non-diabetic without the assistance of any physician or medical tests. This study's methodology was classified into two the Diabetes Prediction Approach and the Proposed System Architecture Design. The Diabetes Prediction Approach uses a novel approach, Light Gradient Boosting Machine (LightGBM), to ensure a faster diagnosis. The Proposed System Architecture Design has been combined into seven modules; the Answering… More >

  • Open Access

    ARTICLE

    A Lightweight CNN Based on Transfer Learning for COVID-19 Diagnosis

    Xiaorui Zhang1,2,3,*, Jie Zhou2, Wei Sun3,4, Sunil Kumar Jha5

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1123-1137, 2022, DOI:10.32604/cmc.2022.024589 - 24 February 2022

    Abstract The key to preventing the COVID-19 is to diagnose patients quickly and accurately. Studies have shown that using Convolutional Neural Networks (CNN) to analyze chest Computed Tomography (CT) images is helpful for timely COVID-19 diagnosis. However, personal privacy issues, public chest CT data sets are relatively few, which has limited CNN's application to COVID-19 diagnosis. Also, many CNNs have complex structures and massive parameters. Even if equipped with the dedicated Graphics Processing Unit (GPU) for acceleration, it still takes a long time, which is not conductive to widespread application. To solve above problems, this paper… More >

  • Open Access

    ARTICLE

    Optimal Deep Learning Based Inception Model for Cervical Cancer Diagnosis

    Tamer AbuKhalil1, Bassam A. Y. Alqaralleh2,*, Ahmad H. Al-Omari3

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 57-71, 2022, DOI:10.32604/cmc.2022.024367 - 24 February 2022

    Abstract Prevention of cervical cancer becomes essential and is carried out by the use of Pap smear images. Pap smear test analysis is laborious and tiresome work performed visually using a cytopathologist. Therefore, automated cervical cancer diagnosis using automated methods are necessary. This paper designs an optimal deep learning based Inception model for cervical cancer diagnosis (ODLIM-CCD) using pap smear images. The proposed ODLIM-CCD technique incorporates median filtering (MF) based pre-processing to discard the noise and Otsu model based segmentation process. Besides, deep convolutional neural network (DCNN) based Inception with Residual Network (ResNet) v2 model is More >

  • Open Access

    ARTICLE

    Real Time Brain Tumor Prediction Using Adaptive Neuro Fuzzy Technique

    Duraimurugan Nagendiran1,*, S. P. Chokkalingam2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 983-996, 2022, DOI:10.32604/iasc.2022.023982 - 08 February 2022

    Abstract Uncontrollable growth of cells may lead to brain tumors and may cause permanent damages to the brain or even death. To make early diagnosis and treatment, identifying the position and size of tumors is identified as a tedious and troublesome problem among the existing computer-aided diagnosis systems. Moreover, the progression of tumors may vary among the patients with respect to shape, location, and volume. Therefore, to effectively classify and diagnose the brain tumor images according to severity stages follows the sequence of processing such as pre-processing, segmentation, feature extraction, and classification techniques to carrying out More >

  • Open Access

    ARTICLE

    Soft Computing Based Discriminator Model for Glaucoma Diagnosis

    Anisha Rebinth1,*, S. Mohan Kumar2

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 867-880, 2022, DOI:10.32604/csse.2022.022955 - 08 February 2022

    Abstract In this study, a Discriminator Model for Glaucoma Diagnosis (DMGD) using soft computing techniques is presented. As the biomedical images such as fundus images are often acquired in high resolution, the Region of Interest (ROI) for glaucoma diagnosis must be selected at first to reduce the complexity of any system. The DMGD system uses a series of pre-processing; initial cropping by the green channel’s intensity, Spatially Weighted Fuzzy C Means (SWFCM), blood vessel detection and removal by Gaussian Derivative Filters (GDF) and inpainting algorithms. Once the ROI has been selected, the numerical features such as More >

Displaying 291-300 on page 30 of 498. Per Page