Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (498)
  • Open Access

    EDITORIAL

    Introduction to the Special Issue on Computer-Assisted Imaging Processing and Machine Learning Applications on Diagnosis of Chest Radiograph

    Shuihua Wang1,*, Zheng Zhang2, Yuankai Huo3

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.3, pp. 707-709, 2022, DOI:10.32604/cmes.2022.023806 - 27 June 2022

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Gaussian Optimized Deep Learning-based Belief Classification Model for Breast Cancer Detection

    Areej A. Malibari1, Marwa Obayya2, Mohamed K. Nour3, Amal S. Mehanna4, Manar Ahmed Hamza5,*, Abu Sarwar Zamani5, Ishfaq Yaseen5, Abdelwahed Motwakel5

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4123-4138, 2022, DOI:10.32604/cmc.2022.030492 - 16 June 2022

    Abstract With the rapid increase of new cases with an increased mortality rate, cancer is considered the second and most deadly disease globally. Breast cancer is the most widely affected cancer worldwide, with an increased death rate percentage. Due to radiologists’ processing of mammogram images, many computer-aided diagnoses have been developed to detect breast cancer. Early detection of breast cancer will reduce the death rate worldwide. The early diagnosis of breast cancer using the developed computer-aided diagnosis (CAD) systems still needed to be enhanced by incorporating innovative deep learning technologies to improve the accuracy and sensitivity… More >

  • Open Access

    ARTICLE

    Transfer Learning for Chest X-rays Diagnosis Using Dipper Throated Algorithm

    Hussah Nasser AlEisa1, El-Sayed M. El-kenawy2,3, Amel Ali Alhussan1,*, Mohamed Saber4, Abdelaziz A. Abdelhamid5,6, Doaa Sami Khafaga1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2371-2387, 2022, DOI:10.32604/cmc.2022.030447 - 16 June 2022

    Abstract Most children and elderly people worldwide die from pneumonia, which is a contagious illness that causes lung ulcers. For diagnosing pneumonia from chest X-ray images, many deep learning models have been put forth. The goal of this research is to develop an effective and strong approach for detecting and categorizing pneumonia cases. By varying the deep learning approach, three pre-trained models, GoogLeNet, ResNet18, and DenseNet121, are employed in this research to extract the main features of pneumonia and normal cases. In addition, the binary dipper throated optimization (DTO) algorithm is utilized to select the most… More >

  • Open Access

    ARTICLE

    Aortic Dissection Diagnosis Based on Sequence Information and Deep Learning

    Haikuo Peng1, Yun Tan1,*, Hao Tang2, Ling Tan2, Xuyu Xiang1, Yongjun Wang2, Neal N. Xiong3

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2757-2771, 2022, DOI:10.32604/cmc.2022.029727 - 16 June 2022

    Abstract Aortic dissection (AD) is one of the most serious diseases with high mortality, and its diagnosis mainly depends on computed tomography (CT) results. Most existing automatic diagnosis methods of AD are only suitable for AD recognition, which usually require preselection of CT images and cannot be further classified to different types. In this work, we constructed a dataset of 105 cases with a total of 49021 slices, including 31043 slices expert-level annotation and proposed a two-stage AD diagnosis structure based on sequence information and deep learning. The proposed region of interest (RoI) extraction algorithm based More >

  • Open Access

    ARTICLE

    A Novel Integrated Learning Scheme for Predictive Diagnosis of Critical Care Patient

    Sarika R. Khope1, Susan Elias2,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2333-2350, 2022, DOI:10.32604/cmc.2022.029423 - 16 June 2022

    Abstract Machine learning has proven to be one of the efficient solutions for analyzing complex data to perform identification and classification. With a large number of learning tools and techniques, the health section has significantly benefited from solving the diagnosis problems. This paper has reviewed some of the recent scientific implementations on learning-based schemes to find that existing studies of learning have mainly focused on predictive analysis with less emphasis on preprocessing and more inclination towards adopting sophisticated learning schemes that offer higher accuracy at the cost of the higher computational burden. Therefore, the proposed method… More >

  • Open Access

    ARTICLE

    LBP–Bilateral Based Feature Fusion for Breast Cancer Diagnosis

    Yassir Edrees Almalki1, Maida Khalid2, Sharifa Khalid Alduraibi3, Qudsia Yousaf2, Maryam Zaffar2, Shoayea Mohessen Almutiri4, Muhammad Irfan5, Mohammad Abd Alkhalik Basha6, Alaa Khalid Alduraibi3, Abdulrahman Manaa Alamri7, Khalaf Alshamrani8, Hassan A. Alshamrani8,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4103-4121, 2022, DOI:10.32604/cmc.2022.029039 - 16 June 2022

    Abstract Since reporting cases of breast cancer are on the rise all over the world. Especially in regions such as Pakistan, Saudi Arabia, and the United States. Efficient methods for the early detection and diagnosis of breast cancer are needed. The usual diagnosis procedures followed by physicians has been updated with modern diagnostic approaches that include computer-aided support for better accuracy. Machine learning based practices has increased the accuracy and efficiency of medical diagnosis, which has helped save lives of many patients. There is much research in the field of medical imaging diagnostics that can be… More >

  • Open Access

    ARTICLE

    Deer Hunting Optimization with Deep Learning Model for Lung Cancer Classification

    Mahmoud Ragab1,2,3,*, Hesham A. Abdushkour4, Alaa F. Nahhas5, Wajdi H. Aljedaibi6

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 533-546, 2022, DOI:10.32604/cmc.2022.028856 - 18 May 2022

    Abstract Lung cancer is the main cause of cancer related death owing to its destructive nature and postponed detection at advanced stages. Early recognition of lung cancer is essential to increase the survival rate of persons and it remains a crucial problem in the healthcare sector. Computer aided diagnosis (CAD) models can be designed to effectually identify and classify the existence of lung cancer using medical images. The recently developed deep learning (DL) models find a way for accurate lung nodule classification process. Therefore, this article presents a deer hunting optimization with deep convolutional neural network… More >

  • Open Access

    ARTICLE

    Rice Disease Diagnosis System (RDDS)

    Sandhya Venu Vasantha1, Shirina Samreen2,*, Yelganamoni Lakshmi Aparna3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1895-1914, 2022, DOI:10.32604/cmc.2022.028504 - 18 May 2022

    Abstract Hitherto, Rice (Oryza Sativa) has been one of the most demanding food crops in the world, cultivated in larger quantities, but loss in both quality and quantity of yield due to abiotic and biotic stresses has become a major concern. During cultivation, the crops are most prone to biotic stresses such as bacterial, viral, fungal diseases and pests. These stresses can drastically damage the crop. Lately and erroneously recognized crop diseases can increase fertilizers costs and major yield loss which results in high financial loss and adverse impact on nation’s economy. The proven methods of… More >

  • Open Access

    ARTICLE

    Deep Learning Enabled Computer Aided Diagnosis Model for Lung Cancer using Biomedical CT Images

    Mohammad Alamgeer1, Hanan Abdullah Mengash2, Radwa Marzouk2, Mohamed K Nour3, Anwer Mustafa Hilal4,*, Abdelwahed Motwakel4, Abu Sarwar Zamani4, Mohammed Rizwanullah4

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1437-1448, 2022, DOI:10.32604/cmc.2022.027896 - 18 May 2022

    Abstract Early detection of lung cancer can help for improving the survival rate of the patients. Biomedical imaging tools such as computed tomography (CT) image was utilized to the proper identification and positioning of lung cancer. The recently developed deep learning (DL) models can be employed for the effectual identification and classification of diseases. This article introduces novel deep learning enabled CAD technique for lung cancer using biomedical CT image, named DLCADLC-BCT technique. The proposed DLCADLC-BCT technique intends for detecting and classifying lung cancer using CT images. The proposed DLCADLC-BCT technique initially uses gray level co-occurrence More >

  • Open Access

    ARTICLE

    Deep Learning Enabled Disease Diagnosis for Secure Internet of Medical Things

    Sultan Ahmad1, Shakir Khan2, Mohamed Fahad AlAjmi3, Ashit Kumar Dutta4, L. Minh Dang5, Gyanendra Prasad Joshi6, Hyeonjoon Moon6,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 965-979, 2022, DOI:10.32604/cmc.2022.025760 - 18 May 2022

    Abstract In recent times, Internet of Medical Things (IoMT) gained much attention in medical services and healthcare management domain. Since healthcare sector generates massive volumes of data like personal details, historical medical data, hospitalization records, and discharging records, IoMT devices too evolved with potentials to handle such high quantities of data. Privacy and security of the data, gathered by IoMT gadgets, are major issues while transmitting or saving it in cloud. The advancements made in Artificial Intelligence (AI) and encryption techniques find a way to handle massive quantities of medical data and achieve security. In this… More >

Displaying 271-280 on page 28 of 498. Per Page