Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (339)
  • Open Access

    ABSTRACT

    Relations between optical nerve damage, intrCular pressure and in vivo ocular tissue properties monitoring strategies for glaucoma diagnosis and prevention

    David CC LAM*, Leo K-K LEUNG, Match W-L KO, R. G-Z CHEN, I-S CHAN

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.3, pp. 85-86, 2011, DOI:10.3970/icces.2011.020.085

    Abstract The eye is a biomechanical organ where the health of the optical nerves and vision are affected by the intrCular pressure and the ocular tissue structure. The ocular pressure is the primary parameter monitored by opticians and ophthalmologists to determine the ocular health of the eye to prevent glaucoma where 50% of the vision can be lost before detection by the patient. Elevated intrCular pressure is clinically correlated with the degeneration of the optic nerves, but the biomechanical mechanism for the degeneration remains speculative. In this study, we present the results from biomechanical modeling of nerve damage as a function… More >

  • Open Access

    ABSTRACT

    Unsupervised Support Vector Machine Based Principal Component Analysis for Structural Health Monitoring

    Chang Kook Oh1, Hoon Sohn1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.3, pp. 91-100, 2008, DOI:10.3970/icces.2008.008.091

    Abstract Structural Health Monitoring (SHM) is concerned with identifying damage based on measurements obtained from structures being monitored. For the civil structures exposed to time-varying environmental and operational conditions, it is inevitable that environmental and operational variability produces an adverse effect on the dynamic behaviors of the structures. Since the signals are measured under the influence of these varying conditions, normalizing the data to distinguish the effects of damage from those caused by the environmental and operational variations is important in order to achieve successful structural health monitoring goals. In this paper, kernel principal component analysis (kernel PCA) using unsupervised support… More >

  • Open Access

    ARTICLE

    Crack Detection and Localization on Wind Turbine Blade Using Machine Learning Algorithms: A Data Mining Approach

    A. Joshuva1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.13, No.2, pp. 181-203, 2019, DOI:10.32604/sdhm.2019.00287

    Abstract Wind turbine blades are generally manufactured using fiber type material because of their cost effectiveness and light weight property however, blade get damaged due to wind gusts, bad weather conditions, unpredictable aerodynamic forces, lightning strikes and gravitational loads which causes crack on the surface of wind turbine blade. It is very much essential to identify the damage on blade before it crashes catastrophically which might possibly destroy the complete wind turbine. In this paper, a fifteen tree classification based machine learning algorithms were modelled for identifying and detecting the crack on wind turbine blades. The models are built based on… More >

  • Open Access

    ARTICLE

    Use of Discrete Wavelet Features and Support Vector Machine for Fault Diagnosis of Face Milling Tool

    C. K. Madhusudana1, N. Gangadhar1, Hemantha Kumar, Kumar,*,1, S. Narendranath1

    Structural Durability & Health Monitoring, Vol.12, No.2, pp. 111-127, 2018, DOI: 10.3970/sdhm.2018.01262

    Abstract This paper presents the fault diagnosis of face milling tool based on machine learning approach. While machining, spindle vibration signals in feed direction under healthy and faulty conditions of the milling tool are acquired. A set of discrete wavelet features is extracted from the vibration signals using discrete wavelet transform (DWT) technique. The decision tree technique is used to select significant features out of all extracted wavelet features. C-support vector classification (C-SVC) and ν-support vector classification (ν-SVC) models with different kernel functions of support vector machine (SVM) are used to study and classify the tool condition based on selected features.… More >

  • Open Access

    ARTICLE

    A Comparative Study of Bayes Classifiers for Blade Fault Diagnosis in Wind Turbines through Vibration Signals

    A. Joshuva1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.11, No.1, pp. 69-90, 2017, DOI:10.3970/sdhm.2017.012.069

    Abstract Renewable energy sources are considered much in energy fields because of the contemporary energy calamities. Among the important alternatives being considered, wind energy is a durable competitor because of its dependability due to the development of the innovations, comparative cost effectiveness and great framework. To yield wind energy more proficiently, the structure of wind turbines has turned out to be substantially bigger, creating conservation and renovation works troublesome. Due to various ecological conditions, wind turbine blades are subjected to vibration and it leads to failure. If the failure is not diagnosed early, it will lead to catastrophic damage to the… More >

  • Open Access

    ARTICLE

    Brake Fault Diagnosis Through Machine Learning Approaches – A Review

    Alamelu Manghai T.M.1, Jegadeeshwaran R2, Sugumaran V.3

    Structural Durability & Health Monitoring, Vol.11, No.1, pp. 43-67, 2017, DOI:10.3970/sdhm.2017.012.043

    Abstract Diagnosis is the recognition of the nature and cause of a certain phenomenon. It is generally used to determine cause and effect of a problem. Machine fault diagnosis is a field of finding faults arising in machines. To identify the most probable faults leading to failure, many methods are used for data collection, including vibration monitoring, thermal imaging, oil particle analysis, etc. Then these data are processed using methods like spectral analysis, wavelet analysis, wavelet transform, short-term Fourier transform, high-resolution spectral analysis, waveform analysis, etc., The results of this analysis are used in a root cause failure analysis in order… More >

  • Open Access

    ARTICLE

    Parkinson’s Disease Detection Using Biogeography-Based Optimization

    Somayeh Hessam1, Shaghayegh Vahdat1, Irvan Masoudi Asl2,*, Mahnaz Kazemipoor3, Atefeh Aghaei4, Shahaboddin Shamshirband,5,6,*, Timon Rabczuk7

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 11-26, 2019, DOI:10.32604/cmc.2019.06472

    Abstract In recent years, Parkinson's Disease (PD) as a progressive syndrome of the nervous system has become highly prevalent worldwide. In this study, a novel hybrid technique established by integrating a Multi-layer Perceptron Neural Network (MLP) with the Biogeography-based Optimization (BBO) to classify PD based on a series of biomedical voice measurements. BBO is employed to determine the optimal MLP parameters and boost prediction accuracy. The inputs comprised of 22 biomedical voice measurements. The proposed approach detects two PD statuses: 0-disease status and 1- good control status. The performance of proposed methods compared with PSO, GA, ACO and ES method. The… More >

  • Open Access

    ARTICLE

    Fault Diagnosis of Motor in Frequency Domain Signal by Stacked De-noising Auto-encoder

    Xiaoping Zhao1, Jiaxin Wu1,*, Yonghong Zhang2, Yunqing Shi3, Lihua Wang2

    CMC-Computers, Materials & Continua, Vol.57, No.2, pp. 223-242, 2018, DOI:10.32604/cmc.2018.02490

    Abstract With the rapid development of mechanical equipment, mechanical health monitoring field has entered the era of big data. Deep learning has made a great achievement in the processing of large data of image and speech due to the powerful modeling capabilities, this also brings influence to the mechanical fault diagnosis field. Therefore, according to the characteristics of motor vibration signals (nonstationary and difficult to deal with) and mechanical ‘big data’, combined with deep learning, a motor fault diagnosis method based on stacked de-noising auto-encoder is proposed. The frequency domain signals obtained by the Fourier transform are used as input to… More >

  • Open Access

    ARTICLE

    Feature Selection Method Based on Class Discriminative Degree for Intelligent Medical Diagnosis

    Shengqun Fang1, Zhiping Cai1,*, Wencheng Sun1, Anfeng Liu2, Fang Liu3, Zhiyao Liang4, Guoyan Wang5

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 419-433, 2018, DOI: 10.3970/cmc.2018.02289

    Abstract By using efficient and timely medical diagnostic decision making, clinicians can positively impact the quality and cost of medical care. However, the high similarity of clinical manifestations between diseases and the limitation of clinicians’ knowledge both bring much difficulty to decision making in diagnosis. Therefore, building a decision support system that can assist medical staff in diagnosing and treating diseases has lately received growing attentions in the medical domain. In this paper, we employ a multi-label classification framework to classify the Chinese electronic medical records to establish corresponding relation between the medical records and disease categories, and compare this method… More >

Displaying 331-340 on page 34 of 339. Per Page