Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    PROCEEDINGS

    The Instability Mechanism of Moving Contact Line on the Surface of Soluble Solids

    Xudong Chen1,2, Quanzi Yuan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09318

    Abstract The wetting and instability of liquids on the surface of soluble solids is a problem of interface stability at multiple scales, which is coupled by mechanics and chemistry. This problem is crucial to application fields such as micro-nano processing and microscopic observation. In this work, the instability process of moving contact lines on the surfaces of soluble solids is investigated in experiments, theories, and simulations. Based on the unique shapes of the surfaces of soluble solids caused by instability in experiments, the concept of pagoda instability is proposed. Then the Cahn-Hilliard interfaces are developed to establish the evolution model of… More >

  • Open Access

    PROCEEDINGS

    Dissolution at a Meniscus-Adhered Nanofiber

    Shihao Tian1,2, Quanzi Yuan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09327

    Abstract When one soluble fiber is partially merged into liquid, a meniscus forms and the fiber can be dissolved into one pinpoint with curvature. This process has been used in the manufacture of sophisticated pinpoints. However, it is hard to observe the dissolution process in the laboratory and the dissolution mechanisms are still far from being well understood in the nanoscale. Here we utilize molecular dynamics simulations to study the dissolution process of one meniscus-adhered nanofiber. We find that the tip’s curvature radius decreases and then increases, reaching the maximum in the middle state. This state is defined as the “Sh… More >

  • Open Access

    ARTICLE

    Crack Propagation in Pipelines Under Extreme Conditions of Near-Neutral PH SCC

    Abdullah Alsit*, Mohammad Alkhedher, Hasan Hamdan

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5315-5329, 2022, DOI:10.32604/cmc.2022.031042

    Abstract Stress Corrosion Cracking (SCC) process through which cracks occur in a variety of susceptible materials is a result of a combination of residual or applied stresses and corrosion. In oil and gas field, buried pipeline steels are made of low-alloy steels with a ferritic-pearlitic structure, such as X70. In dilute solutions, these materials are prone to SCC failure. The Near-neutral simulated soil solution (NS4) solution is established to imitate SCC conditions and subsequently became the industry requirement for crack growth experiments in the majority of laboratories. The strain-assisted active crack pathways are considered while modelling SCC growth as an oxide… More >

  • Open Access

    ARTICLE

    An Approach for Quantifying the Influence of Seepage Dissolution on Seismic Performance of Concrete Dams

    Shaowei Wang1,2, Cong Xu1, Hao Gu3,*, Pinghua Zhu1, Hui Liu1, Bo Xu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 97-117, 2022, DOI:10.32604/cmes.2022.018721

    Abstract Many concrete dams seriously suffer from long-term seepage dissolution, and the induced mechanical property deterioration of concrete may significantly affect the structural performance, especially the seismic safety. An approach is presented in this paper to quantify the influence of seepage dissolution on seismic performance of concrete dams. To connect laboratory test with numerical simulation, dissolution tests are conducted for concrete specimens and using the cumulative relative leached calcium as an aging index, a deterioration model is established to predict the mechanical property of leached concrete in the first step. A coupled seepage-calcium dissolution-migration model containing two calculation modes is proposed… More >

  • Open Access

    ARTICLE

    Dissolution and Degradation of Spent Radioactive Cation Exchange Resin by Fenton Oxidation Combining Microwave

    Jiangbo Li1,2, Lielin Wang1,2,*, Hua Xie1,2, Xiaoyu Li1,2, Zhiqiang Feng1,2, Wenxiu Zhang1,2

    Energy Engineering, Vol.117, No.3, pp. 129-142, 2020, DOI:10.32604/EE.2020.010336

    Abstract This study introduced a significantly effective approach called the microwave-enhanced Fenton method to degrade spent radioactive cation exchange resin. Compared with the Fenton (99% after 180 min) and photo-Fenton (90% after 198 min) reactions, this unique microwave-enhanced Fenton reaction has the highest degradation rate for spent radioactive cation exchange resin degradation (98.55% after 60 min). Carbon dioxide, sulfate and small molecular compounds were produced in the degradation of cation exchange resin, as determined by XRD and FT-IR. A model for the microwave-enhanced Fenton degradation mechanism of cation exchange resin was constructed. Microwaves were implemented to boost the concentration of hydroxyl… More >

  • Open Access

    The Effect of Rotating Magnetic Fields on the Growth of SiGe Using the Traveling Solvent Method

    T. J. Jaber1, M. Z. Saghir1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.3, pp. 175-190, 2006, DOI:10.3970/fdmp.2006.002.175

    Abstract The study deals with three-dimensional numerical simulations of fluid flow and heat transfer under the effect of a rotating magnetic field (RMF) during the growth of Ge0.98Si0.02 by the traveling solvent method (TSM). By using a RMF, an attempt is made to suppress buoyancy convection in the Ge0.98Si0.02 solution zone in order to get high quality and homogeneity with a flat growth interface. The full steady-state Navier-Stokes equations, as well as the energy, mass transport and continuity equations, are solved numerically using the finite element method. Different magnetic field intensities (B=2, 4, 10, 15 and 22 mT) for different rotational… More >

  • Open Access

    ARTICLE

    Rapid Microwave-Assisted Ionothermal Dissolution of Cellulose and Its Regeneration Properties

    Xu Wang1,3, Jianhong Zhou1,2, Bo Pang1,2, Dawei Zhao1,2,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1363-1380, 2019, DOI:10.32604/jrm.2019.08218

    Abstract Introduction of the strategy of anhydrous calcium carbonate protection incorporated with the drop by drop reaction, high-purity 1-butyl-3-methylimidazolium chloride ([Bmim] Cl) was prepared at reaction temperature of 80°C for only 10 h. Cellulose samples from different biomass sources (with different degree of polymerization characteristic) could be rapidly (no more than 10 minutes) and completely dissolved in the [Bmim] Cl using a microwave-assisted ionothermal route. Homogeneous cellulosic regenerates with high degree of polymerization and thermal stability characteristics were obtained through a coagulation process in water. Furthermore, the dissolved celluloses were readily regenerated into solid products such as casting films and spinning… More >

  • Open Access

    ARTICLE

    Axisymmetric and 3-D Numerical Simulations of the Effects of a Static Magnetic Field on Dissolution of Silicon into Germanium

    F. Mechighel1,2,3, N. Armour4, S. Dost4, M. Kadja3

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.1, pp. 53-80, 2014, DOI:10.3970/cmes.2014.097.053

    Abstract Numerical simulations were carried out to explain the behavior exhibited in experimental work on the dissolution process of silicon into a germanium melt. The experimental work utilized a material configuration similar to that used in the Liquid Phase Diffusion (LPD) and Melt-Replenishment Czochralski (Cz) growth systems. The experimental dissolution system was modeled by considering axisymmetric and three-dimensional (3-D) domains. In both cases, the governing equations, namely conservation of mass, momentum balance, energy balance, and solute transport balance, were solved using the Finite Element Method.
    Measured concentration profiles and dissolution heights from the experiment samples showed that the application of a… More >

  • Open Access

    ARTICLE

    A Unified Approach to Numerical Modeling of Fully and Partially Saturated Porous Materials by Considering Air Dissolved in Water

    D. Gawin1, L. Sanavia2

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.3, pp. 255-302, 2009, DOI:10.3970/cmes.2009.053.255

    Abstract This paper presents a unified mathematical approach to model the hydro-thermo-mechanical behavior of saturated and partially saturated porous media by considering the effects of air dissolved in liquid water. The model equations are discretized by means of the Finite Element method. A correspondingly updated code is used to analyze two examples; the first one is the well known Liakopoulos test, i.e. the drainage of liquid water from a 1m column of sand, which is used to validate numerically the model here developed. As second example, a biaxial compression test of undrained dense sands where cavitation takes place at strain localization… More >

  • Open Access

    ARTICLE

    A Numerical Simulation Study of Silicon Dissolution under Magnetic Field

    A. Kidess1, N. Armour1, S. Dost1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 29-56, 2011, DOI:10.3970/fdmp.2011.007.029

    Abstract When a metallic liquid is subject to strong magnetic body forces, the issues of convergence and numerical stability may arise in numerical simulations. Handling of magnetic body force terms needs care. In this work we have studied two open codes and discussed the related issues. Magnetic force and mass transport terms were added to these codes. Handling the stability issues was discussed. The developed systems were validated by two benchmark cases. Then, the dissolution process of silicon into the germanium melt was selected as an application. The objective was the numerical study of the dissolution process with and without the… More >

Displaying 1-10 on page 1 of 11. Per Page